
Thomson and Rayleigh Scattering

Initial questions: What produces the shapes of emission and absorption lines? What

information can we get from them regarding the environment or other conditions?

In this and the next several lectures, we’re going to explore in more detail some specific

radiative processes. The simplest, and the first we’ll do, involves scattering. There are

many interesting limits of scattering, but for a start we’ll treat frequency-independent

nonrelativistic scattering (Thomson scattering).

Suppose a lonely electron has an electromagnetic wave incident on it. The wave has a

frequency ω. Ask class: what will be the response of the electron to the electric field of

the wave? Since the electric field is sinusoidal, the electron will oscillate up and down at

the frequency ω. Ask class: what will be the result of that acceleration? The electron

will radiate. Ask class: at what frequency? It will just be at the driving frequency of the

radiation, ω. Note also that the radiation is not in the original direction of polarization.

Seen from the outside, this means it looks like a photon hits the electron, then scatters off

in some new direction. In the limit we’re considering, the new frequency is exactly the same

as the old frequency. That’s Thomson scattering.

If we have a flux (in number per square centimeter per second) of incident particles at

some target, and there is some rate of interactions (in number per second), the cross section

is just the rate divided by the flux. Ask class: in this case, we have an energy flux and a

power, so how do we get the cross section? Same idea: power (energy per second) divided

by energy flux (energy per area per second). Therefore, to figure out the cross section, we

need the radiated power for a given flux.

The electric force from a linearly polarized wave is

F = eǫ̂E0 sin ωt , (1)

where ǫ̂ is the E field direction. From Newton’s second law and the definition of the dipole

moment d = er, we get
d̈ = (e2E0/m)ǫ̂ sin ωt

d = −(e2E0/mω2)ǫ̂ sin ωt .
(2)

Note, by the way, a subtle but crucial difference between a single charged particle like

the electron we are considering, and a target with multiple electrons that is polarizable. For

something that is polarizable, an incident electric field shifts the probability distribution of

the electron clouds in such a way as to induce a dipole moment that is proportional to the

incident electric field. If the constant of proportionality is αp, this means that the dipole

moment is

d = αpǫ̂E0 sin ωt . (3)



Thus for this situation, the second derivative of the dipole moment is d̈ = −ω2αpǫ̂E0 sin ωt.

The factor of ω2 has important consequences that we will address after we return to

Thomson scattering.

Larmor’s formula, which gives the total power as P = 2d̈2/3c3, gives the time-averaged

power per solid angle:

dP/dΩ = [e4E2
0/(8πm2c3)] sin2 Θ , (4)

where Θ is the angle relative to the initial polarization direction, not the propagation

direction. The incident flux is 〈S〉 = (c/8π)E2
0 , so we can define a differential cross section

for scattering into the solid angle dΩ:

dP/dΩ = 〈S〉(dσ/dΩ) = (cE2
0/8π)(dσ/dΩ) , (5)

so

dσ/dΩ = (e4/m2c4) sin2 Θ = r2
0 sin2 Θ , (6)

where r0 ≡ e2/mc2 is the “classical radius of the electron”, r0 = 2.8 × 10−13 cm. It’s the

radius that would give an electrostatic energy equal to mec
2. Integrating over all angles,

one finds σ = (8π/3)r2
0; one can also get this directly from P = 〈S〉σ. For an electron,

σ = σT = 6.65 × 10−25 cm2.

Ask class: from the preceding, how would they expect the Thomson cross section of

a proton to compare to that of an electron? The cross section is proportional to 1/m2, so

the cross section for a proton is tiny, something like 3 × 106 times less than for an electron.

That’s the reason why, for fully ionized plasmas, interaction of radiation with protons is

rarely considered. Ask class: qualitatively, why is the cross section of a proton less than

that of an electron? It’s because the acceleration of a proton is lots less than that of an

electron (due to the higher mass), so the radiation power is less as well.

We can now compute the differential cross section for unpolarized light by realizing that

it’s just the superposition of two orthogonally polarized waves. If we define θ as the angle

between the scattered radiation and the original radiation (so that θ = π/2−Θ), the result

is

dσ/dΩ =
1

2
r2
0(1 + cos2 θ) , (7)

and the total cross section is the same as before (as it must be, since an electron at rest has

no intrinsic polarization, so it has to react to all linear polarizations in the same way).

We notice a couple of things. First, the radiation is front-back symmetric but not

isotropic. There is a tendency for the radiation to be scattered in the direction of motion

or directly opposite it. In principle this means that a random walk of scatters is a little

different from what it would be with isotropic scattering, but in practice there is not much

difference. Second, scattering polarizes radiation (as we’ve already seen). In particular, if



one starts with unpolarized light then the light in direction θ has a degree of polarization

Π = (1 − cos2 θ)/(1 + cos2 θ) . (8)

Light along the original direction is unpolarized. Perpendicular to that direction, it’s 100%

polarized.

We’ve assumed that the energy of the photon is much less than the mass-energy of the

electron. Ask class: if the photon energy were comparable to the electron mass-energy,

what difference would they expect that to make? The main difference is that the momentum

of the photon is then significant, meaning that the electron has some non-negligible recoil

due to the scattering. This leads to Compton scattering, which we discuss in the next

lecture.

Now let’s get back to what we would have if the target is polarizable. Then

d̈ ∝ ω2 ∝ λ−2, where λ is the wavelength of the incident radiation. Thus the power scales

as d̈2 ∝ λ−4. This is Rayleigh scattering; visible light has a much lower frequency than the

natural frequency of molecules in the atmosphere, so blue light scatters a lot more than red

light. Thus, blue skies and red sunsets!

We will now consider a generalization of both limits we have discussed. Suppose the

target is something with structure (e.g., an atom or molecule). This therefore has a natural

frequency. How does this change things? Let’s guess, then see if we’re right. Suppose that

the frequency of the wave is much larger than the natural frequency of the atom. Then the

binding of the electron plays little role. Ask class: how do they expect the cross section to

behave then? It’s just the same as if the electron were free, so we should get the Thomson

cross section again. Now, suppose that the frequency of the wave is much smaller than the

natural frequency. Then, the whole atom essentially rides up and down on the wave. Thus,

the acceleration is proportional to the second derivative of the motion. If the motion is like

cos ωt, the acceleration is like ω2 cos ωt. Ask class: what would this say about the cross

section? Remember that the cross section is radiated energy divided by incident flux. Thus,

since radiated energy is proportional to a2, this suggests a form like σ ∝ ω4. Let’s see how

that goes in more detail.

First, let’s think about a particle oscillating by itself. If it has a sinusoidal oscillation

with frequency ω0, you might think that the equation of motion would be

ẍ + ω2
0x = 0 . (9)

Ask class: is there any other contribution to the motion? Remember that an accelerated

particle emits radiation, so we have to take radiation reaction into account. The averaged

force is −τx(3), where x(3) is the third time derivative. However, we can simplify by realizing

that radiation reaction is a small perturbation (unless the oscillation period is ∼ 10−23 s or



less!), so we’ll say that x(3) ≈ −ω2
0ẋ. Then we find

ẍ + ω2
0τ ẋ + ω2

0x = 0 . (10)

Note that the middle term has an odd number of time derivatives. That means that it is not

time reversible. That’s one of the signatures of damping, which is also not time reversible.

Let’s add a driving force. Suppose that an external time-varying electric field is added,

which contributes a force eE0 cos ωt. This is what an incident photon would do. A common

trick here is to use exp(iωt) instead of cos ωt, and remember to take the real part later. We

get

ẍ + ω2
0τ ẋ + ω2

0x = (eE0/m) exp(iωt) . (11)

When confronted with differential equations of this type, a good approach is to try a

solution of the form x = A exp(αt), then solve for A and α after substitution. When you do

this, you find

x = |x0| exp[i(ωt + δ)] (12)

where
x0 = −(eE0/m) (ω2 − ω2

0 − iω3
0τ)

−1

δ = tan−1[ω3τ/(ω2 − ω2
0)] .

(13)

Looking past all the various factors, what this basically says is that the electron does

oscillate at the driving frequency ω, but delayed (or advanced) by the phase shift δ. We can

now figure out the power radiated by getting the time average using the Larmor formula

and taking the real part:

P = e2|x0|
2ω4/(3c3) =

e4E2
0

3m2c3

ω4

(ω2 − ω2
0)

2 + (ω3
0τ)2

. (14)

The time-averaged flux is 〈S〉 = (c/8π)E2
0 , so the cross section is the power over the flux or

σ(ω) = σT
ω4

(ω2 − ω2
0)

2 + (ω3
0τ)2

. (15)

Note that since τ is so small, τω0 ≪ 1.

Ask class: what’s one limit we could explore? We could look at the limit ω ≫ ω0. Ask

class: what is the answer in that limit? It’s just σT . This corresponds to our expectations.

Ask class: what about when ω ≪ ω0? Then σ(ω) = σT (ω/ω0)
4, which is what we got

before for Rayleigh scattering.

Now let’s explore another limit in some more detail. Suppose that the frequency ω of

the photon is close to the natural (or resonant) frequency ω0 of the atom/molecule. The

only subtlety here is dealing with the (ω2 − ω2
0)

2 term in the bottom. A standard method is



to retain factors such as ω − ω0, but otherwise set ω to ω0. Then we get

σ(ω) = πσT

2τ

ω2

0
τ/2π

(ω−ω0)2+(ω2

0
τ/2)2

= πσT

2τ
Γ/2π

(ω−ω0)2+(Γ/2)2

= 2π2e2

mc
Γ/2π

(ω−ω0)2+(Γ/2)2

(16)

where Γ = ω2
0τ is the “natural width” of the resonance and we have used τ = 2e2/3mc3

from Lecture 11 and σT = (8π/3)e4/m2c4 from earlier in this lecture. This profile is known

as a Lorentz profile for a spectral line. Incidentally, near the resonance the shape of the

cross section is the same as the shape of a line from free oscillations of the atom. That’s

not accidental; one could excite the free oscillations by having a pulse of radiation near ω0

hit the atom, then ring down freely.

This whole approach has interest in part because it provides the only classical description

of a spectral line. Often when one gets the correct quantum result, one refers the cross

section to the classical result to get a ratio. For example, let’s integrate that line over

angular frequency ω or the cycle frequency ν:
∫
∞

0 σ(ω) dω = 2π2e2/(mc)∫
∞

0 σ(ν) dν = πe2/(mc) .
(17)

But wait, didn’t we cheat? We found that at high frequencies the cross section approaches

a constant value (the cross section σT of Thomson scattering). This would mean that the

total integral is infinite! Oops. This type of situation is encountered in a number of places in

physics; the formal integral is infinite, but you know that physically it must be finite. One

way to deal with this is to impose a cutoff on the integral, and (1) show that this is justified

physically, and (2) show that the precise value of the cutoff doesn’t make much difference.

Ask class: in this case, what cutoff can we make and how can we justify it? We know that

the radiation reaction formula is only valid if ωτ ≪ 1, so if ω gets too large, all bets are off.

Now, does the frequency at which we cut off the integral make a difference? The integral

of just the Thomson cross section is
∫ ωmax

0 σT dω = σT ωmax. We know that ωmax ≪ 1/τ , so

σT ωmax ≪ σT /τ = 4πe2/mc, so the precise value can’t matter much. Therefore, our little

“swindle” above was okay.

The preceding was a classical attempt to model a spectral line of an atom. In the

quantum theory one does things differently, but it is still convenient to define the “oscillator

strength” fnn′ of a transition from state n to n′ by
∫

∞

0
σ(ν) dν =

πe2

mc
fnn′ . (18)

Recommended Rybicki and Lightman problem: 3.5


