
Specific Intensity

Initial question: A number of active galactic nuclei display jets, that is, long, nearly

linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositely-

directed jets, but some have only one. What’s going on?

Ask class: what physical properties of radiation can be measured? Photon energy, flux,

polarization, angular distribution. There are a lot of ways that radiation can be produced or

affected. However, for a start, let’s think about radiation when there is no matter present. In

particular, consider a bundle of rays moving through space. We want to know what happens

to those rays. For example, do they diverge or converge? What happens to the intensity

that is measured by an observer? Are there conserved quantities that we can use? For

completeness, let’s define a few terms. Assume that over a time interval dt, a total energy

dE is received by a detector with area dA perpendicular to the direction from which the

radiation is coming. Then the flux is F = dE/(dtdA). If the source subtends a solid angle

dΩ as seen by the observer, then the surface brightness is S = dE/(dtdAdΩ). Finally, if we

concentrate only on the energy received in a frequency range dν from ν to ν + dν, then the

specific intensity is defined as

Iν =
dE

dAdt dΩ dν
. (1)

This can be remembered as “energy per everything”, and it is a fundamental quantity in

understanding radiation. But how does this quantity change for radiation moving through

free space?

Let’s begin with a simple situation: an idealized model of the Sun that has constant

brightness across its surface and is a perfect sphere that radiates isotropically. Ask class:

how does the flux received depend on the distance r of the observer from the Sun? This is an

inverse square law, so F ∝ r−2. Ask class: how does the solid angle of the Sun as perceived

by the observer depend on r? This is also an inverse square, so dΩ ∝ r−2. Ask class: so,

how does the surface brightness of the Sun depend on r? It doesn’t! The r dependences

cancel out. This means that the surface brightness is a constant in this simplified situation.

Ask class: how does the specific intensity change? Again, if the frequency does not change

(note the qualifier!), the specific intensity is constant.

We can immediately apply this to a number of situations. One example is gravitational

lensing. Suppose you have a distant galaxy which would have a certain brightness if observed

directly. Gravitational lensing, which does not change the frequency, splits the image into

two images. Suppose that one of those images has twice the flux of the unlensed galaxy.

Assume no absorption or scattering. Ask class: how large would that image appear to be

compared to the unlensed image? Surface brightness is conserved, meaning that to have



twice the flux it must appear twice as large. This is one way that people get more detailed

glimpses of distant objects. Lensing magnifies the image, so more structure can be resolved.

Okay, but what happens if the photon frequency does change? A highly important

simplification to remember is that all photons do the same thing redshift-wise, meaning that

the fractional change in frequency is independent of the initial photon frequency. Let’s think

about a quasar at cosmological distances, where redshifts can be important. Treat it as a

point (i.e., not resolved) and assume that it radiates isotropically. Assuming we’ve already

taken out the direct r−2 distance dependence, then Ask class: how should the flux we see

depend on the quasar’s redshift 1 + z, where νr = νe/(1 + z)? The energy of each photon

is decreased by a factor of 1 + z, and the time interval between photons is increased by a

factor of 1 + z, so the flux is down by a factor of (1 + z)2. Note, by the way, that those

effects might seem different. However, they are closely related: for example, you can think

of your “clock” as ticking every time the crest of a light wave comes by. If time intervals

are increased by a factor of (1 + z), then the time between crests must be increased by that

factor as well. Thus the period has to increase by a factor of (1 + z), which means that the

frequency and hence the energy of photons must decrease by that same factor.

Ask class: now suppose the redshift is gravitational instead. For example, you’ve got

a source deep in the gravitational well of a black hole (but outside the event horizon!). How

does the flux you observe depend on the gravitational redshift? In the same way: like (1+z)2.

The source of the redshift doesn’t matter, just the fact that the photon frequency and time

between photons is altered.

It’s clear, then, that we need to modify our conservation law if the photon energies

change during propagation. Later in the course we’ll talk about Liouville’s theorem, which

says that the phase space density, that is, the number per (distance-momentum)3 (e.g., the

distribution function), is conserved. For photons, this means that the quantity Iν/ν
3 is

conserved in free space. The source of the possible frequency change could be anything:

cosmological expansion, gravitational redshift, Doppler shifts, or whatever. The integral of

the specific intensity over frequency, I =
∫

Iν dν, is proportional to ν4.

This can be applied in many ways. Consider, for example, surface brightness. Ask

class: how does the surface brightness of a galaxy at a redshift z compare with that of a

similar galaxy nearby, assuming no absorption or scattering along the way? The frequency

drops by a factor 1 + z, so the surface brightness drops by (1 + z)4. Since galaxies are

detected based on surface brightness contrast (Ask class: why is this? Because one always

makes a detection compared to a background, and for an extended object it’s the surface

brightness that matters), this means that it becomes extremely difficult rather quickly to

detect galaxies at high redshifts.

But is this the whole story? Suppose we are observing galaxies in a particular waveband,



for example the R band. Ask class: if we look at two identical galaxies, one close (z0 ≪ 1)

and one at a significant redshift z, will the surface brightness we observe from the more

distant galaxy be (1 + z)−4 times that of the closer galaxy? No! The problem is that

we aren’t looking at the same portion of the spectrum. What we see as the R band may

have been B band when it was emitted. This adds significant complications in cosmological

observations; the correction for the shifting of wavelength is called K-correction. The thing

to remember is that if one could do bolometric observations (over all wavelengths) then the

frequency-integrated specific intensity would transform like ν4.

This is an extremely powerful way to figure out what is happening to light as it goes

every which way. The specific intensity is all you need to figure out lots of important things,

like the flux or the surface brightness, and in apparently complicated situations you just

follow how the frequency behaves. Many people don’t use this, and their derivations are

often overly complicated and subject to error as a result. One example relates to gamma-ray

bursts. The model for the “afterglow” in X-rays, optical, IR, and radio is that there is a

blast wave produced by a central explosion, and what we are seeing is radiation from the

surface of this highly relativistic blast wave, which in addition could be a jet instead of

being spherically symmetric. The quantities of interest (e.g., the light curve of the burst,

the flux, etc.) are all derivable from the specific intensity. Given that there is a cosmological

redshift (z ∼ 1 in many cases) and a strong Doppler shift (Lorentz factors γ ∼ 300 are

inferred), this can be a very tough road to hoe otherwise. I’ve also used this extensively in

computations of ray tracing around rotating neutron stars, where in general the spacetime

is quite complicated.

Let’s go through a few of the quantities that can be derived from the specific intensity,

then we’ll consider a couple of examples of how to use it. Suppose we use a detector of area

dA and want to know the differential flux dFν observed from a source in the solid angle dΩ.

Assume that dΩ is at an angle θ with respect to the normal to dA. Ask class: how does

dFν relate to Iν? It’s simply

dFν = Iν cos θdΩ . (2)

The net flux is the integral of this quantity over all solid angles:

Fν =

∫

Iν cos θdΩ . (3)

Note that we can check whether this is reasonable: the units agree and the limits agree

(e.g., when θ = π/2 the flux is zero, as it should be). But wait: what if Iν is isotropic,

i.e., there is an equal amount of radiation coming from all directions? Then Fν = 0. Is this

reasonable? Yes, because we want the net flux. If the radiation field is isotropic (or indeed

back-front symmetric), then there is no net flux because as much flux is coming through the

−n direction as the n direction.



Note, by the way, that when we say “isotropic” in this example, we are using a distinct

(but related) meaning than when we talk about a source radiating isotropically. Consider a

point source that radiates isotropically. Then any observer at a given distance will measure

the same flux and spectrum from the source, regardless of their direction from the source.

However, the flux in that case all moves away from the source. Here, we are thinking about

a particular point in space, and by “isotropic” we mean that the received radiation comes

equally from all directions. Thus if the radiation field is isotropic, the radiation comes from

all directions; if a source radiates isotropically, it radiates equally in all directions but an

outside receiver will see only outgoing flux. Ask class: can you think of circumstances in

which the received radiation is extremely close to isotropic?

How about the pressure? Ask class: before calculating, do we expect that in an

isotropic radiation field the pressure will vanish, as the flux did? No, we don’t. Just as in

a uniform gas, the pressure is nonzero even if there is no net motion. The pressure is the

momentum per unit time per unit area. The momentum of a photon of energy E is E/c,

so the momentum flux is dFν/c. The component of the momentum flux normal to the area

element dA (i.e., the pressure) needs to be multiplied by another factor of cos θ, so

pν =
1

c

∫

Iν cos
2 θdΩ . (4)

As expected, this does not vanish for an isotropic radiation field. In fact, if Iν is nonzero

anywhere then pν is positive, as it must be.

As we’ll discuss later, radiation can exert a net force (by scattering, for example), which

has many applications. Lots of people (including the authors of our textbook!) loosely talk

about radiation pressure when they mean radiation force. Don’t make that mistake! As you

see, the pressure can be nonzero when the flux is zero, and similarly the pressure can be

nonzero when the force is zero. If all the radiation is moving in the same direction (e.g., the

radiation field outside a point source) then the distinction is blurred, but in general it can

be complicated.

Obviously, you can integrate any of these quantities with respect to ν to get the frequency-

integrated flux, pressure, etc.

Ask class: can they think of a way that an object could experience a net radiation

force in an isotropic radiation field?

We can also compute the radiation energy density. Ask class: for an isotropic radiation

field, do we expect the radiation energy density to vanish? No! In fact, unlike the pressure

in a given direction, for the energy density each photon contributes equally regardless of its

direction of propagation. Define the specific energy density uν as the energy per volume per

frequency interval. Then the energy in a volume dV is dE = uν(Ω)dV dνdΩ. At the speed



of light c, dV = cdAdt in a given direction, so

dE = uν(Ω)cdAdtdνdΩ = IνdAdtdνdΩ , (5)

where the second equality follows from the definition of specific intensity. Therefore, uν(Ω) =

Iν/c and the energy density is

uν =
1

c

∫

IνdΩ . (6)

Notice that the energy density, the flux, and the pressure are different moments of the specific

intensity (weighted by different factors of cos θ). For an isotropic radiation field (Iν indepen-

dent of Ω) we have uν = 1

c
Iν

∫

dΩ = (4π/c)Iν and pν = 1

c
Iν

∫

cos2 θdΩ = (4π/3c)Iν , so that

pν = uν/3. This helps in the discussion of the thermodynamics of blackbody radiation. It

also leads to the definition of the mean intensity, which is just Jν = (1/4π)
∫

IνdΩ.

Now let’s do a couple of examples.

(a) Blazars are types of active galactic nuclei that have relativistic beams pointing close to

our line of sight. Suppose you have one at a redshift z with a beam that has a Lorentz factor

γ and is pointed at an angle θ from your line of sight (that is, θ = 0 is directly towards you).

How does its surface brightness, as measured by you, depend on z, γ, and θ?

(b) Gamma-ray bursts are relatively short (milliseconds to hundreds of seconds) bursts of

gamma rays that are known to come from cosmological distances. Some people believe that

there are gamma-ray bursts from very high redshift, in the range of 10 to 20. For such

sources, the proper distance (i.e., the distance you would measure to them with a ruler) is

essentially independent of redshift. Suppose all gamma-ray bursts are intrinsically identical.

Also suppose that you observe a gamma-ray burst bolometrically (over all frequencies) for

its entire duration as perceived by you. The fluence is the total energy you receive per area,

that is, erg cm−2, after you’ve integrated over the entire burst. How does the fluence depend

on redshift?

Answer:

(a) Remember that surface brightness scales with photon frequency in the same way as

frequency-integrated specific intensity, as I ∝ ν4. Thus, all we need is knowledge of how the

frequency of an individual photon will change due to Doppler and cosmological redshifts.

The cosmological redshift is simply 1/(1 + z). The Doppler shift can be looked up in any

of a number of textbooks, and is [1/γ(1− (v/c) cos θ)]. One can check this: is it maximal

when θ = 0 and minimal when θ = π, as it should be? Yes, so we have a little confidence

that we didn’t misplace a minus sign. Anyway, combining the two, the frequency of a given

photon will change by the combined factor

1

1 + z

[

1

γ (1− (v/c) cos θ)

]

, (7)



and therefore the surface brightness is proportional to

1

(1 + z)4

[

1

γ (1− (v/c) cos θ)

]4

. (8)

For these sources it is usually assumed that there are two jets, one pointing basically towards

us and one pointing away. You can see that for v close to c, there can be a spectacular

difference in the surface brightnesses (factors of 103 or more!), which leads to only one jet

being observable in many cases.

(b) The fluence is the energy per area. This depends on the total energy received and

the total area over which it is spread. But the total area is essentially fixed (because the

proper distance is roughly fixed), so the fluence in this case just depends on the total energy

received. Every photon from the burst will be redshifted by the same factor, 1/(1+z), which

means that the total energy will be decreased by that factor. Therefore, the fluence scales

as 1/(1 + z).

This is not a large factor. It means that gamma-ray bursts may be almost as easy to

detect at z = 10 as they are at z = 5. If so, they may be good beacons from the early

universe. Note that, for example, galaxies are detected based on their surface brightness

(because it’s the contrast with the background that determines detectability). This surface

brightness goes as 1/(1 + z)4, so it drops off much more rapidly with redshift. This makes

early galaxies challenging to detect.
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