
Cyclotron and Synchrotron Radiation

Initial questions: What is one way that we can get a power law spectrum in as-

tronomy? What information can we obtain? How can we measure the magnetic fields of

individual objects? How can we determine that a particular spectrum is produced by syn-

chrotron radiation rather than other effects?

When magnetic fields are present, charges can interact with them and radiate or absorb

radiation. For slowly moving particles this happens at a single frequency, the cyclotron

frequency. For relativistically moving particles, the emission or absorption occurs over a

large range of frequencies, and is called in this case synchrotron radiation. Both names refer

to laboratory accelerators.

Let’s go back to basics, and assume that we have a charge in a region that has a magnetic

field but no electric field. Ask class: from the electromagnetic fields alone, does the particle

energy change? No, because the acceleration due to a magnetic field is perpendicular to the

motion. Therefore, a particle of Lorentz factor γ will evolve in momentum and energy by

d
dt
(γmv) = q

c
v ×B

d
dt
(γmc2) = qv · E = 0 .

(1)

Ask class: what does this mean about the total speed? Constant, of course. Ask class:

how does the speed along the magnetic field change? It doesn’t, because the acceleration is

all perpendicular to magnetic field. Since the total speed is constant and the speed along

the field is constant, this implies circular motion around the field, combined with (possibly)

a uniform drift along the field. That is, the charge moves in a helix along the field. If we

write just the perpendicular component of the equation of motion, we get

dv⊥

dt
=

q

γmc
v⊥ ×B . (2)

Since by definition v⊥ is perpendicular to B, this means that the rate of change of the

direction (i.e., the frequency of rotation or gyration) is the cyclotron frequency

ωB = qB/(γmc) . (3)

Now, this is interesting. It says that for a fixed Lorentz factor (or total speed), the frequency

of rotation is independent of the angle the charge makes to the magnetic field (the pitch

angle). It also says that the frequency is lower when the momentum or mass or higher;

you can think of this as meaning that it is more difficult for the magnetic field to bend the

trajectory.



This rotation is an acceleration, with magnitude a⊥ = ωBv⊥, so there is associated

radiation. From our previous formulae, the power radiated is

P = 2q2

3c3
γ4 q2B2

γ2m2c2
v2
⊥

= 2
3
r20cβ

2
⊥
γ2B2 .

(4)

As always, we can extend this to a distribution of directions. Suppose, in particular, that we

have a single speed β, but an isotropic distribution of velocities of charges. Then, averaging

over directions and rewriting, we find

Psynch =
4

3
σT cβ

2γ2UB , (5)

where UB is the magnetic energy density UB = B2/8π.

Ask class: does this expression look familiar? It has exactly the same form as the

Compton power, which was Pcompt =
4
3
σT cβ

2γ2Uph, where Uph was the photon energy density.

Therefore, the ratio of powers is just the ratio of energy densities:

Psynch/Pcompt = UB/Uph . (6)

Stuff like this doesn’t happen by accident. There is a strong relationship between “scattering”

off of field lines and scattering off of photons.

Now let’s think about the spectrum of radiation produced by motion around a magnetic

field. First, consider a very slowly moving particle. Ask class: qualitatively, how does

the electric field vary? The charge is moving in a circle, so the electric field variation is

sinusoidal. Ask class: what does this mean about the energy spectrum that we see? If we

have perfectly sinusoidal motion, then a Fourier transform gives us just a single frequency.

Therefore, the energy spectrum would be a single line at the cyclotron frequency ωB. This

also means, incidentally, that a slowly moving particle can only absorb or emit photons at this

frequency; one consequence is that the scattering cross section goes way up for frequencies

close to the cyclotron frequency.

Now suppose that the particle speed increases. Ask class: what happens to the electric

field variation? Recall that when relativity is involved, acceleration radiation is beamed in

the direction of motion of the charge. That means that instead of being perfectly sinusoidal,

the electric field variation has sharper peaks. Ask class: what effect does that have on the

Fourier transform? Since the variation isn’t sinusoidal, we don’t just have a single frequency

any more. However, we do know that the motion is still periodic with frequency ωB, so we

can only have that frequency and multiples of it. The result is that the Fourier transform

involves ωB, 2ωB, and so on, and hence the energy spectrum involves ~ωB, 2~ωB, and so on.

There are therefore several lines, harmonically spaced.

Now suppose that the particle speed is highly relativistic. Ask class: what’s the effect

on the observed spectrum? In this case, the radiation is so strongly peaked forwards that



many, many harmonics contribute. There are so many that the discreteness of the lines is

difficult to distinguish, so that we approach a continuum spectrum. In a real situation, of

course, particles of many different speeds are involved, which helps blend the spectrum if γ

is not constant.

Let’s go into the highly relativistic case (γ ≫ 1) in more detail. We know that the

radiation is beamed forward in a cone of approximate opening half-angle 1/γ. We therefore

might guess that since most of the radiation is emitted over an angle that is of order 2/γ of

a radian, the peak frequency in the synchrotron spectrum would be of order γωB. However,

this is not the case, because of the effect of light travel times.

Assume for simplicity that the pitch angle is α = 90◦, meaning that the particle is

moving perpendicularly to the field line (i.e., its motion is a circle, not a helix), and that

the circular motion of the particle is in the plane of our line of sight. In the cone of main

emission, the particle travels a distance equal to 2/γ times the radius of curvature a of the

path, a = v/ωB. Call point 1 the point in the orbit at which we are first in the beam, and

point 2 the last point at which we are in the beam (thus, the particle reaches point 2 after

point 1). As seen by someone on the side, the times at which these points are reached are

related by t2 − t1 ≈ 2/(γωB). But what is seen by the observer in the beam? If γ ≫ 1 then

the linear distance between these points is d ≈ v(t2− t1), where v is the speed of the particle.

Here’s the picture, then: at time t1 in the frame of the center of gyration, a light pulse is

sent out from the particle. At time t2 another light pulse is sent out. But, remember, the

particle is traveling with a speed close to the speed of light. Thus, by the time the second

pulse is sent out, the first pulse is ahead of it, but not by much; it’s only traveling a factor

c/v faster, so it has only covered an extra distance of (c/v−1)v(t2− t1) = (1−v/c)c(t2− t1).

The observer therefore finds that the two pulses arrive separated by a much shorter time, by

a factor 1− v/c ≈ 1/(2γ2) for γ ≫ 1. In general, if the pitch angle is α then the difference

in arrival times is

∆tA ≈ (γ3ωB sinα)−1 . (7)

You can see, therefore, that a little Lorentz factor goes a long way! Ask class: from the

preceding, what do they expect to be the approximate maximum frequency observed for

cyclotron radiation? It’s on the order of the inverse of ∆tA; conventionally, the “critical

frequency” is defined as

ωc ≡
3

2
γ3ωB sinα . (8)

Recall that ωB scales as 1/γ, so the actual dependence goes like γ2. Now, this doesn’t mean

that there is no emission beyond ωc, just that it drops off rapidly.

In the highly relativistic limit, the spectrum depends only on the combination γθ, if θ is

the polar angle of the orbit. This can be used (see book) to show that in this limit the syn-

chrotron spectrum is a universal function of ω/ωc, which is rather convenient. Schematically,



we have

P (ω) =

√
3

2π

q3B sinα

mc2
F (ω/ωc) . (9)

The limits of F for high and low argument are

F (x) ∝ x1/3, x ≪ 1

F (x) ∝ x1/2e−x, x ≫ 1 .
(10)

It has a peak at x = ω/ωc ≈ 0.29.

One general comment: often in astronomy spectra are characterized over limited ranges

by power laws. It is therefore common to quote a spectral index: if we can say that for some

range

P (ω) ∝ ω−s , (11)

then s is the spectral index. Note the negative sign! A large positive spectral index means a

sharply dropping spectrum. Ask class: What is the spectral index of the Planck function

in the Rayleigh-Jeans limit? It’s s = −2, since the power increases with frequency like ω2.

Another cautionary note: when you see a spectral index quoted, make sure you know if this

is an energy spectral index or a photon (or number) spectral index. They differ by 1.

If the electrons have a power law distribution in energy and Lorentz factor, then if

N(E)dE = CE−pdE the resulting power distribution is

Ptot(ω) ∝ ω−(p−1)/2 (12)

implying a spectral index s = (p− 1)/2. Note that this is the same spectral index that you

get for a single Compton scattering off of electrons with a power law distribution of energies.

What about polarization? Suppose that the magnetic field direction is perpendicular

to our line of sight; we’ll say that the field is in the x direction and our line of sight is in

the z direction. Consider a single particle, moving with Lorentz factor γ and pitch angle α.

Ask class: qualitatively, what will the polarization be? It will be elliptically polarized in

general. However, Ask class: if we now have a distribution of pitch angles, what happens?

The right and left circular components cancel out, so we end up with linear polarization. In

the midterm we considered α = π/2 and found that the radiation would be 100% polarized.

Ask class: will it be 100% polarized if a distribution of pitch angles is considered? No,

because a given particle will have both x and y polarization components. The x components

will cancel out in the net polarization but will contribute intensity, so the net polarization

is in the y direction. It’s fairly high, about 75% for frequency integrated radiation from

particles of a single energy.

When we discussed bremsstrahlung we mentioned that there is an inverse process, free-

free absorption. Ask class: what processes are similarly related to synchrotron emission?



There is absorption, in which a photon is absorbed by an electron spiraling around a magnetic

field. There is also stimulated emission, in which an electron emits a photon preferentially

in the direction and at the frequency of a pre-existing photon. This sounds like the Einstein

relations, except that we now have the strange situation of continuum states instead of

discrete states, since we don’t have atoms around. Thus, when we consider “states” we have

to think of free particle states. This is done, qualitatively, by breaking up the continuum

states into regions of phase space with phase volume h3, then considering transitions between

those. Details are in section 6.8 of Rybicki and Lightman, but I’ll just quote some results.

First, Ask class: generically, do they expect that photons of low frequency or high

frequency will have a larger optical depth to synchrotron processes going through a given

region? Low frequency, since at high enough frequency one starts to run out of electrons

with a large enough Lorentz factor to interact. Therefore, schematically, one expects that the

low-frequency spectrum is absorbed, and this is in fact called synchrotron self-absorption.

In this range, the source function is Sν ∝ ν5/2; note that this is different from the Rayleigh-

Jeans slope of 2, one indication that this is a nonthermal process. Note also that this is

independent of the power law index for the electrons. In the optically thin high-frequency

portion of the spectrum, we see the synchrotron emission directly, which has a spectral

index of (p − 1)/2 for an electron distribution with an index p. This rollover, from ν5/2

to ν−(p−1)/2, is characteristic of synchrotron radiation and is one way to identify it as the

physical mechanism generating a spectrum.

Recommended Rybicki and Lightman problem: 6.1


