
Bound-Bound and Bound-Free Transitions

Initial questions: What is the role of atomic lines and edges in astronomy? What are

some of the subtleties involved in identifying lines and edges, and drawing physical inferences

from them?

From general issues of transition rates we’ll move to specifics. As before, we’ll start

out with qualitative issues, then we’ll actually do a derivation of the bound-bound oscillator

strength for hydrogen, to see how things work in detail.

There are two types of atomic transition: one in which an electron moves from one bound

state to another (bound-bound transitions), and one in which an electron moves from a bound

state to an ionized state (a bound-free transition). Ask class: qualitatively, what effect does

this have on a spectrum, say if these transitions absorb a background continuum? A bound-

bound transition is between two sharply defined states of energy, hence it is significant only

over a small range of energies. Thus, bound-bound transitions give lines: potentially large

changes in the specific intensity, but over a narrow energy range. A bound-free transition

is not sharply defined in energy, since in principle the ionized electron can have anywhere

from zero energy (if it was barely ionized) to a large energy (if it was ejected with a large

kinetic energy). There is a minimum energy, that required to ionize the electron in the

first place. Therefore, the characteristic of a bound-free transition in a spectrum is an edge:

no absorption below some energy, then a sharp onset in the absorption above that critical

energy. As we’ll see, the absorption decreases above the critical energy.

Ask class: why, do they think, is it that lines and edges have such a fundamental role

in the understanding of astronomy, whereas although continuum spectra are useful they give

much less certain interpretations? The key is that line and edge spectra have very precisely

defined special energies and their interpretation is clearly atomic (or molecular in some

cases). Therefore, the starting place is known, and deviations (redshifts, line broadening,

etc.) can be interpreted in terms of the astrophysics. It is amusing that in 1835, Augustus

Comte (a positivist philosopher) used the composition of stars as an example of something

that could never be known. In his lifetime, however, spectroscopy was already being used

for that very purpose.

In practice, however, there are difficulties to surmount. Ask class: If handed a spectrum

that has a number of lines and edges, how would they go about learning things from it? The

first step is to identify the transitions responsible for those lines and edges. Ask class:

how can this be done? In principle, one has a list of rest-frame line and edge energies, then

one “simply” shifts these until they match the spectrum. This is even done in practice,

but sometimes there are complications. For example the spectrum of absorption lines from

a quasar (typically at high redshift) can include lines from intervening clouds at several



redshifts, so there is a blend one must disentangle. In addition, when high redshifts are

involved or there are lots of lines, the correct identification isn’t always obvious. One reason

that, e.g., the doublet line for Mg II is often used is that it has specific line ratios that make

its identification more secure.

Anyway, suppose that you’ve managed to identify the elements and transitions respon-

sible for each line and edge. Ask class: how do you then proceed to deriving physical

information about the system? This is where the information content of the lines and edges

is remarkable. In the next class we’ll go over line broadening in particular, but the point

is that if you know the energies, then the line strengths give you lots of clues as to the

temperature, density, composition, magnetic field strengths, and many other things.

You do have to be careful. In the early part of the 20th century, people looked at stars,

particularly the Sun, and were tempted to conclude that it was mainly made of heavy metals

such as iron. After all, most of the lines were due to metals. However, in her thesis work

Cecilia Payne showed that it isn’t so; the Sun and other stars are primarily made up of

hydrogen and helium. Ask class: if so, why do we mainly see metal lines? It’s because

hydrogen and helium are often ionized in stars; in addition, the lowest-energy transitions are

usually high enough in energy that it isn’t easy to excite them in stellar photospheres. Only

by careful modeling was Payne able to conclude correctly that light elements dominate the

composition of stars.

For most lines or edges, the complications are sufficient that it is best to measure the

properties in a laboratory. For the simplest atoms, though, numerical calculations do pretty

well, and for single-electron (hydrogen-like) atoms one can even do the calculations analyt-

ically. We’re going to do an example now in detail, because it is helpful to see how such a

calculation is carried out in its full glory.

Collecting some formulae from previous lectures, we get

gifif =
∑ 2

3

m

~
ωif |rfi|2 , (1)

where gi is the statistical weight of the initial state and the sum is over degenerate levels of

the initial and final states. Here

|rfi|2 ≡
∣

∣

∣

∣

∫

ψ∗

frψi d
3r

∣

∣

∣

∣

2

. (2)

Let’s compute the electric dipole transition strength from the n = 1 state of hydrogen to

the n = 2 state of hydrogen. Ask class: What does this mean about the initial quantum

numbers (n, l,m) and the final quantum numbers (n′, l′,m′)? For some value of n, the

quantum number l can take on values from 0 to n− 1, so the initial state must have l = 0.

The final state can in principle have l = 0 or l = 1, but for an electric dipole transition



∆l = ±1 so the final state must have l = 1. Finally, the azimuthal quantum number m takes

on values from −l to +l, so in the initial state m = 0 and in the final state m =-1, 0, or 1.

Therefore, the transition is from (1,0,0) to (2,1,-1), (2,1,0), or (2,1,1). The wave functions

are
ψ100 = π−1/2a

−3/2
0

e−r/a0

ψ21−1 = r−1R21Y1−1

ψ210 = r−1R21Y10
ψ211 = r−1R21Y11 .

(3)

Here R21 = 2−3/2a
−5/2
0

3−1/2r2e−r/2a0 and Ylm are the spherical harmonics. Note a property

of the radial wavefunctions: for l = 0, there is a peak at r = 0, but for l > 0 the probability

of r = 0 is zero. That makes sense; if in classical physics a particle in a central potential

has nonzero angular momentum, it can’t be at the origin, and the same is true in quantum

mechanics.

What about |rfi|2? In classical physics one would think about this as x2 + y2 + z2. You

could also write this as 1

2
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2
|x− iy|2 + z2, and in quantum mechanics this becomes
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It is convenient to do it this way because those particular combinations are expressible in

terms of spherical harmonics:

x± iy = r(8π/3)1/2Y1±1

z = r(4π/3)1/2Y10 .
(5)

Since the wavefunction is separable into radial and angular factors, one can do the integrals

separately.
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For the transition we are considering, ψ∗

f=r
−1R21Y

∗

1m, because the radial function is purely

real. The volume element is d3r = r2drdΩ, where dΩ = sin θdθdφ. Let’s focus on the last

term above. When we split the integral into radial and angular components, the angular

component is just
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The radial component is
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In general, the position matrix element can be written
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Ask class: what do we know about the properties of spherical harmonics? We know that

they are orthonormal; therefore, for a givenm, only one of the three terms above contributes,

and that integral is 1. If we now perform the sum over m = −1, 0, 1 and multiply by 2 (the

degeneracy of the original state), we get
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Ask class: what is ωif? It’s the frequency of the transition, which is Eif/~, and the

energy of the transition is 3/4 of the ionization energy from the ground state. Numerically,

ωif = (3/8)me4/~3, so finally

gifif =
214

39
= 0.8324 . (13)

Note that Table 10.1 in our book gives just f , which is 0.4162 because gi = 2 for the 1s state.

Ask class: I went through Table 10.1 and summed the oscillator strengths, and it

only came to 0.564, instead of 1, which is what the Thomas-Reiche-Kuhn sum rule tells us.

What’s wrong?

Ask class: given this example, lead us through the steps to compute the oscillator

strength from 1s to 2s. If we did this blindly, we would find that we came up with integrals

like
∫

Y10dΩ, which vanish. This is simply a restatement of the electric dipole selection rule

∆l = ±1.
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What do we do if the final state is a continuum state, as in bound-free absorption?

Instead of a final, precisely defined stationary state, we have an infinitude of them. We

therefore have to consider a differential transition rate, from the bound state i to the contin-

uum state f , for a free electron in the momentum range dp and solid angle dΩ. Therefore,

we need to take our original formula for the transition rate and multiply it by the number

of states, which is equal to the density of states times dpdΩ:
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For a hydrogen-like atom (one electron) of nuclear charge Z, the total bound-free cross

section (i.e., integrated over directions) from a state of principal quantum number n is

σbf =

(

64πn
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0
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3g(ω, n, l, Z), ω ≥ ωn (16)

where ωn = α2mc2Z2/(2~n2) is the ionization frequency and g(ω, n, l, Z) is the Gaunt factor.

The form of the bound-free cross section is an abrupt rise at ωn followed by a decline that

is ∼ ω−3 near threshold, but ∼ ω−7/2 far from the threshold. Incidentally, in practice the

ISM has bound-free edges from many different elements and species. This means that the

overall bound-free opacity decreases a little slower than ω−3, given that at high energies

other contributions come in.

Recommended Rybicki and Lightman problem: 10.4



Fig. 1.— Schematic of bound-free cross section as a function of energy, from

http://www.astro.utu.fi/∼cflynn/Stars/full/boundfree.gif. The cross section is zero until the

threshold energy is reached, above which the cross section drops roughly as ν−3.



Fig. 2.— Absorption lines for a G5IV star, from http://www4.nau.edu/meteorite/meteorite/Images/

absorption lines.png. The narrowness of the lines makes them ideal for precise determination of

the composition, redshift, temperature and other properties of astrophysical systems.


