Practice Problems Related to the Saha Equation

Write a code to compute, and plot,

$$
\begin{equation*}
\log _{10}\left(\frac{y^{2}}{1-y}\right) \tag{1}
\end{equation*}
$$

over a range of temperatures from $T=10^{3} \mathrm{~K}$ to $T=10^{6} \mathrm{~K}$, in logarithmic steps $d \log _{10} T(\mathrm{~K})=$ 0.1 for $\rho=10^{-31} \mathrm{~g} \mathrm{~cm}^{-3}$ (roughly the average baryon density of the universe, $\rho=10^{-24} \mathrm{~g} \mathrm{~cm}^{-3}$ (representative of the average density of the interstellar medium), and $\rho=10^{-16} \mathrm{~g} \mathrm{~cm}^{-3}$ (a reasonable density for a core of a molecular cloud). What trends do you see, and how would you explain them?

