Practice Problems Related to Radiation Fields

1. The electric and magnetic fields are not, of course, actually complex; they are real numbers, and we only represent them as complex numbers for ease of mathematical manipulation. With that in mind, how would we rewrite

$$
\begin{align*}
& \mathbf{E}=\hat{\mathbf{a}}_{1} E_{0} \exp i(\mathbf{k} \cdot \mathbf{r}-\omega t) \tag{1}\\
& \mathbf{B}=\hat{\mathbf{a}}_{2} B_{0} \exp i(\mathbf{k} \cdot \mathbf{r}-\omega t)
\end{align*}
$$

in terms of functions that are strictly real?
2. Plug your real-only expressions for \mathbf{E} and \mathbf{B} into the vacuum Maxwell equations

$$
\begin{align*}
\nabla \cdot \mathbf{E} & =0 & \nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{1}{c} \partial \mathbf{B} / \partial t & \nabla \times \mathbf{B} & =\frac{1}{c} \partial \mathbf{E} / \partial t
\end{align*}
$$

What do you get? Do you find the same answers as you did when you used the complex expressions?

