Practice Problems Related to Polarization

1. Suppose that you have defined axes $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ so that the electric field as a function of time is

$$
\begin{equation*}
\mathbf{E}=\hat{\mathbf{x}} \mathcal{E}_{x} \cos \left(\omega t-\phi_{x}\right)+\hat{\mathbf{y}} \mathcal{E}_{y} \cos \left(\omega t-\phi_{y}\right) . \tag{1}
\end{equation*}
$$

You compute the Stokes parameters I, Q, U, and V for a monochromatic wave. Now you look at the same monochromatic wave with a different set of axes that are the original axes rotated by an angle ψ counterclockwise. What do you get when you compute I, Q, U, and V with respect to these new axes?

