Practice Problems Related to Thomson and Rayleigh Scattering

1. The number density of molecules in the air at sea level is about 3×10^{19} cm⁻³. This is mostly N₂, which has 14 electrons, so that number density of electrons is about 4×10^{20} cm⁻³. Assuming that light interacts with the electrons via Thomson scattering, how far would you expect to be able to see at sea level? Explain.

2. Substitute $x = A \exp(\alpha t)$ into equation (11) in the notes, and thereby derive equations (12) and (13). Explain, qualitatively, the dependence of δ on τ and ω_0 .