
ASTR 606

Example problems

Here are a few example problems in which an inherently complicated formula can be

simplified due to very large/small numbers being involved.

1. Consider a gas of atomic hydrogen for which the single-level Saha equation for

pure hydrogen is valid. To within 50%, calculate the temperature at which the bound-

free and free-free opacities are equal to each other for a h̄ω = 100 eV photon when

n=1 cm−3. The relevant cross sections are: σbf ≈ 2 × 10−14(h̄ω/1 eV)−3 cm2 and

σff ≈ 3 × 10−35nT−1/2(h̄ω/1 eV)−3 cm2, where T is in Kelvin.

We can start by computing the ratio of the cross sections. The dependences on photon

energy cancel out, so the ratio is just about σbf/σff ≈ 6 × 1020T 1/2. This is enormous!

It means that for the opacities to be equal, there must be far more particles that can

contribute to free-free opacity than to bound-free opacity. This means that the gas must be

almost completely ionized. Remember that the bound-free opacity is proportional to the

number of neutral atoms, which is proportional to 1 − y, whereas the free-free opacity is

proportional to the number of ionized atoms, which is proportional to y.

Armed with that knowledge, let’s turn to the Saha equation:

y2

1 − y
=

1

ρ
4.01 × 10−9T 3/2e−1.578×105/T . (1)

We know that y ≈ 1, so let’s write y = 1 − ǫ, with ǫ ≪ 1. Then we have

1

ǫ
≈

1

ρ
4.01 × 10−9T 3/2e−1.578×105/T . (2)

From the ratio of cross sections above, we know that y/(1 − y) = 6 × 1020T 1/2, or

1/ǫ ≈ 6 × 1020T 1/2. Given that the mass density is ρ = nmH = 1.7 × 10−24 g cm−3, the

Saha equation becomes

6 × 1020T 1/2 = 2.4 × 1015T 3/2e−1.578×105/T , (3)

or

Te−1.578×105/T = 2.5 × 105 . (4)

The number on the right is large. That means that the exponential is close to 1, so we

could guess T = 2.5 × 105. This is within 50% of the correct answer, which is about

T = 3.8 × 105 K.



2. (a) Suppose the center of a star has a composition X = 0.7, Y = 0.28, Z = 0.02. To

within 50%, at what temperature is the energy generation rate by CNO burning of hydrogen

equal to the energy generation rate by the p-p chain?

The rates are:

ǫp−p =
2.4 × 104ρX2

T
2/3

9

exp
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)

erg g−1s−1 (5)

and

ǫCNO =
4.4 × 1025ρXZ

T
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)

erg g−1s−1 . (6)

Setting the two equal to each other, we can cancel out the common factors (ρX/T
2/3

9 ) to get

X exp
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1/3
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)

= 1.8 × 1021Z exp
(

−15.228/T
1/3
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)

. (7)

The variable of interest is T , but let’s define α = T
−1/3

9 and take the logarithm of both sides

to get

−3.38α ≈ 45 − 15.228α (8)

(where we’ve put in X = 0.7 and Z = 0.02), so α=3.83 and therefore T ≈ 1.8 × 107 K.

(b) That one was relatively easy because everything but the exponentials and a constant

factor cancelled out. For a greater challenge: with the same composition and an assumed

central density of 100 g cm−3, at what temperature (to within 50%) is the energy generation

rate from the triple-alpha process equal to that from p-p burning?

The triple-alpha rate is

ǫ3α =
5.1 × 108ρ2Y 3

T 3
9

exp (−4.4/T9) . (9)

Setting this equal to the p-p rate and cancelling some common factors,

exp
(

−3.38/T
1/3

9

)

≈ 103ρT
−7/3

9 exp (−4.4/T9) , (10)

where in this expression we substituted X = 0.7 and Y = 0.28. How do we solve this? We

know that the triple-alpha reaction is very temperature-sensitive, so as a first crack we can

assume that the exponentials dominate completely. We will therefore simplify to

exp
(

−3.38/T
1/3

9

)

≈ 103 exp (−4.4/T9) (11)

and take the log. As before, let α = T
−1/3

9 , so we have

−3.38α ≈ 7 − 4.4α3 . (12)

Cubic equations have an analytic solution, but it’s nasty. We know, though, that α > 1

(since T9 < 1) but not by an order of magnitude (since certainly T > 107 K). Let’s substitute



α = 1 in the left side; the justification is that because we will then take a cube root, our

answer won’t depend much on our assumption. We find α ≈ (10.38/4.4)1/3 = 1.33. Note

that if we were to put this back in the equation and solve α = [(7 + 3.38 ∗ 1.33)/4.4]1/3, we

would get 1.38. There is practically no difference.

So, we’re getting T = 109α−3
≈ 4 × 108 K. But you remember that as our initial

simplification step we dropped a factor of T
−7/3

9 . Did this affect our answer much? We can

now put in T9 = 0.4 and see what happens. This means that the constant factor is now

103(0.4)−7/3 = 8500, so the logarithm is 9 instead of 7. Our answer then becomes α = 1.41,

so T = 109α−3
≈ 3.6 × 108 K. The answer is virtually identical.

I’m not going to ask you anything nearly this complicated. But it does demonstrate a

couple of ways in which one can simplify an equation. It also shows that if you’re in doubt

about an answer, you can always iterate (i.e., put your first guess back in the equation, and

solve again). If the answer doesn’t change much, it’s reliable.

3. Here’s an example from high energy astrophysics. A photon with sufficient energy

can produce an electron-positron pair by some different processes, including scattering

off another photon (γγ → e−e+) and single-photon pair production off of a magnetic

field (γB → e−e+B). The cross section for photon-photon pair production is, for

(h̄ω)2
≫ (mec

2)2,

σγγ ≈
3

8
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)

. (13)

Here σT is the Thomson cross section. For single-photon pair production the photon energy

must be h̄ω > 2mec
2. The mean free path for this process d0, such that the number of

photons is attenuated by e−d/d0 in a distance d, is

d0 ≈ 2 × 10−8

(

4.4 × 1013 G

B

)
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cm . (14)

Suppose h̄ω = 100mec
2, and the number density of photons is n = 1020 cm−3. Within

a factor of two, what is the lower limit to the magnetic field such that the mean free path

to single-photon pair production is less than the mean free path to photon-photon pair

production?

Looks complicated, doesn’t it? As usual, though, we have lots of simplifications we can

use. At h̄ω = 100mec
2, the photon-photon pair production cross section is σγγ ≈ 10−4σT .

The mean free path is ℓγγ = 1/(nσ) ≈ 1.5 × 108 cm. Setting d0 = 1.5 × 108 cm gives us

(
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)

exp
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≈ 7 × 1015 . (15)



With such a large answer, the factor out front is essentially irrelevant. Substituting

h̄ω = 100mec
2, we have

exp

[

0.01

(

6 × 1013 G

B

)]

≈ 7 × 1015 . (16)

Solving, B ≈ 1.6 × 1010 G. If we were to put this back in the original equation and solve

again, we’d get B ≈ 2.1 × 1010 G, so our first answer was good enough to the required

factor of 2.


