
Rate Equations and Detailed Balance

Initial question: Last time we mentioned astrophysical masers. Why can they exist

spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

Blackbodies arise if the optical depth is “big enough”. What does that mean? It means

that all processes are in equilibrium with their inverses, so there is no net change in the

chemical composition, ionization fraction, or whatever. If you can establish that this is the

case in a particular situation, you are justified in assuming a blackbody. Even if it isn’t

exactly a blackbody, you can show in many cases (e.g., in stellar interiors) that in a local

region (say, within one mean free path) your matter is close to equilibrium, so you assume

LTE: Local Thermodynamic Equilibrium. This simplifies things greatly, so if you can show

that LTE applies you can heave a sigh of relief.

Ask class: can they think of astronomical situations in which LTE is a bad

approximation? The interstellar medium is a good example; it’s optically thin, and there

are all sorts of nonequilibrium processes. In that case you can’t assume equilibrium and

must instead go to the fundamental rate equations.

A side note: in countless situations involving radiative processes and other astrophysics

it is a good idea to determine if your system is in equilibrium in one way or another. If it is,

you are allowed drastic simplifications. For example, Ask class: is the Sun in equilibrium?

We’d have to say what that means. The free-fall time for the Sun would be about an hour

if nothing stopped it, but the Sun has been shining away for billions of years, so it’s in

dynamic equilibrium. Look for this kind of equilibrium, but always check first, otherwise

you could mislead yourself a lot!

Okay, back to rate equations. In principle you would think that you would have multiple

unrelated rates for a given process. For example, consider a two-level atom: ground state

(level 1) and excited state (level 2). There’s an absorption rate (1 → 2), a spontaneous

emission rate (2 → 1), and a stimulated emission rate (also 2 → 1). We know from

Kirchoff’s law (jν = ανBν) that for a thermal emitter at least there is some relation between

emission and absorption, so we might suspect there is a microscopic relation between the

two. In fact, Einstein (1916) showed that all three rates are related to each other whether

or not the system is in thermal equilibrium! This is called the principle of detailed balance,

and it simplifies the analysis of rates considerably.

Let’s follow Einstein’s treatment of a two-level atom. Let A21, the “Einstein A

coefficient”, be the rate of spontaneous emission. This is the transition probability per unit

time that an atom currently in level 2 will go to level 1.

Now let’s assume that the atom is in the midst of a radiation field with a mean intensity



at frequency ν of Jν = (1/4π)
∫

Iν dΩ. Note that the difference in energies between level

2 and level 1 can’t be defined with infinite precision, because of the uncertainty principle.

Let us therefore be careful and define a line profile φ(ν) that is sharply peaked at the line

center ν0 and is normalized so that
∫

∞

0

φ(ν) dν = 1 . (1)

We can define an average intensity over this profile, J̄ =
∫

∞

0
Jνφ(ν) dν. Note that if Jν

varies slowly over the line profile (which it almost always does), this practically reduces to

Jν0
, but it’s nice to be careful.

Ask class: what effects can the external radiation field produce on the atom?

Absorption or stimulated emission. Now, we’d like to assume that the absorption rate and

stimulated emission rate are both proportional to J̄ , i.e., they are linearly proportional to

intensity. As always, though, we want to be sure we know when this simplifying assumption

can become invalid. This is a tough one, though: Ask class: when might this be incorrect?

The linear relation could break down if the radiation is self-interacting, which might happen

at extremely high intensities or with high photon energies (when processes such as pair

production enter in). In almost all applications this is insignificant, but if you’re analyzing

a very high energy environment (e.g., gamma-ray bursts) you should be cautious.

Anyway, let’s apply that assumption. Then we have a transition rate of B12J̄ for

absorption and B21J̄ for stimulated emission, where B12 and B21 are the Einstein B

coefficients. How are the three coefficients related to each other? We’ll start by analyzing

the situation in thermodynamic equilibrium. For this analysis we assume that the upper

level has a statistical weight of g2 and the lower level has a statistical weight of g1. We also

assume that in equilibrium there are n2 atoms in level 2 and n1 in level 1.

Ask class: what relation does equilibrium imply? It implies that the rate from level 1

to 2 equals the rate from level 2 to 1, or

n1B12J̄ = n2A21 + n2B21J̄ . (2)

Therefore,

J̄ =
A21/B21

(n1/n2)(B12/B21) − 1
. (3)

In equilibrium, the level populations n1 and n2 are given by the Boltzmann distribution,

which says that the number is proportional to the statistical weight times exp(−E/kT ),

where E is the energy of the level. We’re taking a ratio, so the zero point of the energy

doesn’t matter and therefore

J̄ =
A21/B21

(g1B12/g2B21) exp(hν0/kT ) − 1
. (4)



Here hν0 is the energy difference between the levels, with level 2 assumed to have higher

energy than level 1. We also know, however, that in thermodynamic equilibrium Jν = Bν ,

the Planck function. Since the Planck function varies slowly over a sharp line profile,

J̄ = Bν . This expression must hold for all temperatures and for all frequencies ν0. The only

way this can happen is if the Einstein relations hold:

g1B12 = g2B21

A21 = (2hν3/c2)B21 .
(5)

Now let’s sit back and meditate on what we’ve just shown. You might think that we

have only shown that certain relations hold in thermal equilibrium. But actually this is

much more general. Consider: none of the coefficients A21, B12, and B21 can depend on

the external radiation field. A21 is a spontaneous emission coefficient, so it doesn’t interact

with the external field at all. Also, since we have assumed that the rates of absorption and

stimulated emission are linearly proportional to the mean intensity, the B coefficients are

also independent of any properties of the radiation field. Think of this another way: the

B coefficients only depend on a narrow range of frequencies near ν0, so they don’t “know”

about the full spectrum. Thus, it can’t be relevant whether the full spectrum is a blackbody

or not, or even what the intensity is. As a result, the Einstein relations always hold given

our assumption that the mean intensity enters linearly.

Let’s develop our intuition a bit more with a couple of problems from the book. Ask

class: what result do we expect if stimulated emission is ignored? This isn’t obvious, but

it’s good to take a guess anyway so we can learn more after doing the problem.

Again using the trick of thinking first about thermal equilibrium, we now have

n1B12J̄ = n2A21 . (6)

Using the Boltzmann distribution this implies

J̄ = (g2A21/g1B12) exp(−hν0/kT ) . (7)

Ask class: can this equal the Planck function with A21 and B12 independent of temperature?

Nope, the functional form is wrong. However, we do find that if A21/B12 = (2hν3

0
/c2)(g1/g2)

then J̄ equals the Planck function in the Wien limit hν0 ≫ kT . This says that stimulated

emission is negligible in the Wien limit. Ask class: why is this true? It’s because the Wien

limit is where the number of photons in the radiation field drops off exponentially. Since

stimulated emission is proportional to the number of photons whereas spontaneous emission

is independent of the number of photons, there will come a point when stimulated emission

can be ignored.

Now another example. Suppose that the atom interacts with a neutrino field instead

of a photon field. As we’ll discuss more next time, a neutrino is a fermion (a photon is a



boson), so that two or more neutrinos cannot occupy the same state. As a result, instead

of stimulated emission you’d have suppressed emission:

n1B12J̄ = n2A21 − n2B21J̄ . (8)

In addition, in thermal equilibrium the mean intensity is

Jν =
2hν3/c2

exp(hν/kT ) + 1
. (9)

Ask class: if we carry through the same analysis as before, what would they guess would

be the “neutrino Einstein relations”? As you can verify directly, you get exactly the same

expressions as we had before! This is a dramatic indication that the Einstein relations are

properties of the atomic physics and have nothing whatsoever to do with the properties of

an external radiation field! Essentially, bringing in the field is just a convenient way to get

the answer, but it isn’t necessary.

We can express the emission and absorption coefficients using the Einstein coefficients.

Let’s assume that the line profile for emission is the same as it is for absorption (a very

good assumption most of the time). Then, as derived in the book, the emission coefficient is

jν = (hν0/4π)n2A21φ(ν) (10)

and the absorption coefficient is

αν = (hν/4π)φ(ν)(n1B12 − n2B21) . (11)

Note that again stimulated emission is acting like a negative absorption. For the record

(and again from the book, equation 1.6), the transfer equation then becomes

dIν/ds = −(hν/4π)(n1B12 − n2B21)φ(ν)Iν + (hν/4π)n2A21φ(ν) (12)

and the source function is

Sν = n2A21/(n1B12 − n2B21)

= (2hν3/c2)/
(

g2n1

g1n2

− 1
)

−1

.
(13)

Note that the A coefficient has different units from the B coefficients (the latter, multiplied

by Iν , give the units of A21). Also, note that it is pointless to memorize equations such

as this. You can get an idea of what the answer should be by asking yourself how the

intensity should change. Clearly, the intensity will increase if there is spontaneous emission

or stimulated emission, and decrease if there is absorption. Also, remember that absorption

and stimulated emission are proportional to Iν whereas spontaneous emission isn’t. That

should allow you to piece together most of the important parts.

If the matter is in thermal equilibrium with itself, but not necessarily with the radiation,

we have local thermodynamic equilibrium and n1/n2 = (g1/g2) exp(hν/kT ). You can verify



that this makes Sν = Bν . In all other cases (nonthermal emission), this equality does not

hold. A particularly cool way in which matter can be out of thermal equilibrium is in a

laser or maser (the same phenomena but different wavelengths; however, masers are found

in space whereas lasers tend to be laboratory creations). Let’s divert with these a bit.

Suppose for simplicity that g1 = g2 (equal multiplicity of the two states). Then

B12 = B21. Ask class: if n1 > n2, which dominates, absorption or stimulated emission?

Absorption. This is the normal case, because E2 > E1 so in thermal equilibrium (or even

most forms of non-thermal distributions) the lower-energy state is more populated. Ask

class: but what if n2 > n1? Then the intensity increases exponentially along the path of

the beam. Moreover, although it isn’t clear from our discussion here, bosons (e.g., photons)

like to occupy the same quantum state, so the direction and phase of the emitted photon is

the same as that of the original photon. This means tremendous intensity!

Just for fun, let’s think about what conditions might allow a laser/maser. Ask class:

what are the requirements? We need an inverted population, which has higher energy

than the normal population, meaning we need some supply of energy. Another, trickier,

requirement is that the upper state must persist for a while (otherwise spontaneous emission

will reduce the number of atoms in the upper state). In practice this often means that the

level structure has to be complicated: excitation can occur to another state, say state 3,

which decays to state 2. State 2 is then metastable, meaning it has a long time before it

will decay.

In the lab it takes lots of special preparation to get all this to work, mainly because

the number densities (of gas, liquid, or solid) are high enough that thermal equilibrium

(specifically a normal population) can be established rapidly. In space, the number densities

are much less and therefore it is a lot easier for inverted populations to exist. The result is

that masers are common in astronomy: around very young stars, around old stars, in the

centers of galaxies, and so on. The tiny size of masing regions, plus their high intensity

and extreme frequency coherence, makes them remarkably good probes of astrophysical

conditions.


