
Radiative Transitions

Initial questions: How can we compute the strengths of atomic lines? What does the

presence of forbidden lines tell us about the physical state?

From static atoms we now move to their response when perturbed by an electromagnetic

wave. We are going to use a semiclassical approximation, in which the atom is treated

quantum mechanically but the radiation is treated classically. Recall that the classical

approximation is one in which the discrete nature of photons does not matter. Ask class:

given that, which of the Einstein coefficients should we be able to get in this way? The B

coefficients (absorption and stimulated emission), which depend on the external radiation

field. The A coefficient, for spontaneous emission, requires a full quantum treatment and

the inclusion of virtual quanta.

As our initial background, suppose that the unperturbed atom has a Hamiltonian

H0 = p2/2m + eφatom. The eigenvectors of this Hamiltonian are |φn〉, with eigenvalues

En : H0|φn〉 = En|φn〉. Initially, before the wave comes by, let’s say that the system was in

the stationary state |φi〉. Thus in our semiclassical approximation the system will stay that

way for all time if it is not perturbed (in reality, virtual quanta will provide perturbations

and thus induce spontaneous emission if |φi〉 is not the ground state).

If a perturbation is now added then the Hamiltonian changes to

H(t) = H0 + λŴ (t) (1)

where we include the possibility of time dependence and we use the convention that the

magnitude of Ŵ is comparable to the magnitude of H0, but that λ≪ 1. In formal analyses,

this allows us to keep track of the perturbative order. The time-dependent Schrödinger

equation can thus be rewritten as an evolution equation:

i~
∂ψ(t)

∂t
= H(t)ψ(t) , (2)

with the initial condition ψ(0) = |φi〉. Because during the period of the perturbation H(t) 6=

H0, |φi〉 will not in general be an eigenfunction of H(t), thus the wavefunction will evolve.

Note that because the full set of energy eigenfunctions (including ones with degenerate

energies) forms a complete orthonormal basis, ψ(t) can always be represented as a linear sum

of the |φn〉 functions. This means that after the wave has passed, there is some probability

that the system has undergone a transition to a different state. The probability of a transition

to the state |φf〉 (note that after the perturbation we’re back to the original eigenfunctions)

is

Pif (t) = |〈φf |ψ(t)〉|
2 . (3)



Now let’s specify that the perturbation is electromagnetic. In an electromagnetic poten-

tial φ = φatom+φext, where φatom is the scalar potential for the atom, and φext is the external

scalar potential, the nonrelativistic Hamiltonian is

H = P2/2m+ eφ . (4)

Note that here P is the mechanical momentum, not the conjugate momentum p that becomes

−i~∇ in the coordinate representation. The relation between the two is P = p−eA/c, where

A is the external vector potential. As always with the potentials, we have a choice of gauge;

in this case, a convenient one is the “Coulomb gauge” in which ∇ ·A = φext = 0, because

then A commutes with p in their product. In this gauge,

H = p2/2m− (e/mc)A · p+ e2A2/(2mc2) + eφatom . (5)

This can be thought of as the sum of the original (non-perturbed) Hamiltonian plus per-

turbations: H = H0 + H1 + H2, where H0 = p2/2m + eφatom, H1 = (e/mc)A · p, and

H2 = e2A2/(2mc2). Do we have to include both H1 and H2? We can take their ratio to find

out.

H1/H2 = (epA/mc)/(e2A2/2mc2) = (2ev/c)/(α2a0A) , (6)

where α = e2/~c ≈ 1/137 is the fine structure constant and a0 = ~
2/me2 = 5.3 × 10−9 cm

is the Bohr radius. What is the order of magnitude of the velocity? For a typical energy

E = −meZ
2e4/2~2, setting E = −1

2
mev

2 gives v/c = Ze2/~c = Zα. That gives

η ≡ H1/H2 ∼ 2Ze/(αa0A) . (7)

What is the magnitude of A? We know that B = ∇ × A, so with E ∼ B we can estimate

A ∼ λE, where λ is the wavelength of the electromagnetic wave. Note that in doing this

we’re doing the “cancelling the d’s” approach to derivatives. This will be justified after the

fact when we discover that H1 ≫ H2, meaning that real precision isn’t necessary most of the

time. For the energies of interest, λ ∼ a0/α. A few algebraic manipulations then produce

η2 ∼
4~ω

2παa20λE
2
. (8)

What do we do with the E2? We know that the electromagnetic energy density is something

like E2 or B2 (with factors of 8π, but at this level of inaccuracy we don’t care). For a typical

photon energy ~ω, that means that the photon number density is nph ∼ E2/~ω. Putting

this together, the ratio of H1 to H2 is

η ∼ (npha
3
0)

−1/2 . (9)

Ask class: can we argue that in most circumstances this ratio is much larger than unity, so

that H2 may be ignored? The idea is that if there are typically far fewer than one photon



in a cubic Bohr radius, then η ≫ 1. One photon per cubic Bohr radius would be roughly

1025 cm−3. Ask class: for a blackbody, how do we estimate the photon number density? We

could take the radiation energy density and divide by kT , for example. Or, if we happened

to remember that there are about 20T 3 photons per cubic centimeter for a temperature of T

Kelvin, that works as well. Either way, if T ≪ 108 K our assumption that H1 ≫ H2 is okay.

Let’s look at this from another perspective. It turns out that the A · p term represents

single-photon transitions, whereas the A2 term represents two-photon transitions. Therefore,

the H2 term is only important if there is a reasonable probability that “near” the atom

(within a volume a30) there is more than one photon. From a statistical standpoint, this only

is likely if the average number of photons in that volume is greater than or comparable to

unity. As we’ll see, however, there are times when a single-photon transition is forbidden,

meaning that the comparatively rare two-photon transitions are needed to go from one state

to another.

So let’s consider only H1. What does this do? If the Hamiltonian of a system is explicitly

time-independent (e.g., the Hamiltonian of a static atom in the nonrelativistic limit), then

once the system is in an eigenstate of that Hamiltonian it stays that way until there is some

perturbation. The wave function is then ψ(t) = φi(r) exp(−iEit/~), where Ei is the energy of

the ith eigenstate φi. Since the global phase factor exp(iEit/~) does not change measurable

quantities, the system is stationary. Ask class: what does that imply about spontaneous

emission in this picture? It wouldn’t happen; that’s why perturbations from virtual fields

are necessary.

When the time-dependent perturbation H1 is included, things change. In particular,

the original wave function of the system is no longer an eigenstate of the full Hamiltonian.

Thus the wave function is a mixture of energy eigenstates, each of which has a phase factor

that evolves at a different rate (related to their separate energy eigenvalues). The system

therefore evolves. Another way to look at this is that the original set of eigenstates |φi〉

forms a complete set of basis states, so any wave function of the system can be expressed in

terms of them. Therefore, one can write the true wave function as

ψ(t) =
∑

ak(t)φk exp(−iEkt/~) (10)

where the ak(t) are time-dependent coefficients. Thus, the state of the system evolves in a

period of time from the pure state φi (before the perturbation) to a mixture of pure states

after the perturbation. The probability of a transition from state i to state f is the overlap

between the final state and state i. In formulae, the probability per unit time wfi for a



transition from state i to state f due to a perturbation that acts over time T is

wfi = 4π2

~2T
|H1

fi(ωfi)|
2

H1
fi(ω) ≡ (2π)−1

∫ T

0
H1

fi(t
′)eiωt

′

dt′

H1
fi(t) ≡

∫

φ∗

fH
1φi d

3x

ωfi ≡ (Ef − Ei)/~ .

(11)

We assume that A(r, t) has the form

A(r, t) = A(t) exp(ik · r) (12)

and that A(t) vanishes outside the interval (0, T ). For an atom with several electrons, the

perturbation is the sum of the perturbations of each electron singly:

H1 = −
e

mc

∑

A · pj =
ie~

mc
A ·
∑

∇j . (13)

Absorption and induced (or stimulated) emission are intimately related, and in fact wfi = wif

(as is shown in Rybicki and Lightman, pages 270-271). This is the principle of detailed

balance.

The resulting integrals contain a factor of exp(ik · r). It would simplify things greatly if

we could expand this as a power series

eik·r = 1 + ik · r+
1

2
(ik · r)2 + . . . (14)

and take the lowest order terms. Can we do that? We need an estimate of the magnitude of

k · r. Ask class: how can we estimate this? We know that r ∼ a0, and since the wavelength

is λ ∼ a0/(Zα) we have kr ∼ Zα ≪ 1. Ask class: suppose, then, that we are interested in

the inner shell electrons of atoms. Roughly at what point do we need to consider higher order

terms in the expansion? Around Z ∼ 100, the next order term becomes comparable to the

first term. Ask class: for nuclear transitions, the energies are ∼ 106 times higher, and the

dimensions are ∼ 104 times lower, than for atomic transitions. How good is the expansion

then? You’ve got to keep many terms, since k · r ∼ 1. We’ll find out that the first term

(the 1) gives dipole transitions, the second (ik · r) gives quadrupole, and so on. For atoms,

dipole transitions are much stronger than higher-order transitions. One therefore speaks of

“allowed” (dipole) and “forbidden” (higher-order) transitions for atomic spectroscopy. No

such clean hierarchy exists for nuclear transitions.

With the approximation exp(ik · r) ≈ 1, we get

wfi ≈ (4π2/~2c)|(1 · d)fi|
2J (ωfi) , (15)

where d ≡ e
∑

j rj is the dipole operator and J (ω) = (ω2/cT )|A(ω)|2. Also, 1 is a unit

vector giving the polarization: A = A1. Averaging over unpolarized radiation gives a factor

of 1/3, since 〈cos2 θ〉 = 1/3.



We can now take these answers and use them to compute one of the Einstein coefficients.

Then, from the Einstein relations, we can get the other two.

Let u and l refer to the upper and lower states. Then, for unpolarized radiation, we

have

〈wlu〉 = BluJνul , (16)

from the definition of the firstB coefficient. For unidirectional radiation, Jνul = (4π)−1J (νul).

Since ω = 2πν we also have J (νul) = 2πJ (ωul). Therefore,

〈wlu〉 =
1

2
BluJ (ωul) . (17)

Solving, and using the previous expressions, we get

Blu =
32π4|dlu|

2

3ch2
. (18)

Let’s assume that the levels are nondegenerate. Then the Einstein relations give

Blu = Bul

Aul = 64π4ν3ul|dul|
2/(3c3h) .

(19)

To get the transition rate for degenerate levels, one averages over initial states and sums

over final states (see 10.28b in Rybicki and Lightman).

Instead of carrying around the entire formula, it is usual to quote an oscillator strength

for a transition. We hinted at this before: if you take a classical model of a transition line

and integrate the cross section over the frequency, you get
∫

∞

0

σ(ν)dν = πe2/(mc) = Bclassical
lu (hνlu/4π) , (20)

where Bclassical
lu = 4π2e2/(hνlumc). Then in general we can write

Blu = Bclassical
lu flu ,

flu = 2m
3~2gle2

(Eu − El)
∑

|dlu|
2 .

(21)

Here gl is the multiplicity of the lower state, and one sums over the final (upper) state, over

all states with the same energy Eu. One can similarly define an emission oscillator strength,

except that we find the oscillator strength is negative.

We have talked about oscillator strengths assuming discrete states, but in many cases

(e.g., when talking about bound-free transitions), the final state is in a continuum. In that

case, it’s meaningless to think of the oscillator strength to one precisely defined energy, so

instead one talks about a probability per frequency range of the upper state. Then the

continuum oscillator strength is the total to all continuum states.



Remarkably, even though individual oscillator strengths can be complicated to compute,

there is a simple rule that governs the sum of the oscillator strengths of all transitions from

a given state. Suppose we have an atom with N electrons. Let n represent the initial state,

and n′ represent some final state. Then the sum of f over all final states is given by the

Thomas-Reiche-Kuhn sum rule:
∑

n′

fnn′ = N . (22)

Note that since emission oscillator strengths are negative, in general the sum over just

absorption oscillator strengths is greater than or equal to N .

We will close by mentioning some aspects of selection rules. If one considers only dipole

transitions, then it’s only a single electron that is affected (since only a single photon is

involved). One can then ask, for a given (n, l,m) initially, what limits are there on (n′, l′,m′)?

The way to do this is to examine the integrals for dipole mixing of states. The radial integral,

which relates to the n quantum number, is of the form
∫

rRnlRn′l′dr. Examination of these

functions reveals that such integrals can be nonzero for any n and n′. That means that,

say, a transition from n = 1 to n = 7 is just as possible as n = 1 to n = 2. But the l and

m quantum numbers are different. For them, it is found that in electric dipole transitions

∆l = ±1 and ∆m = 0,±1. Two states not related in this way cannot have a direct electric

dipole transition. The higher order terms in the series for exp(ik · r) contribute different

selection rules, but the transitions are much weaker. That’s why electric dipole transitions

are often called allowed, versus the forbidden transitions that have to take other paths.

There are some transition rules that apply to all single-photon transitions. One is that

since photons carry off a single unit of angular momentum, it is impossible to go from one

state with zero total (spin plus orbital) angular momentum to another zero total angular

momentum state. To do that, one must have a transition to an intermediate state or a

collision. Consider for example helium in a 1s2s state instead of its ground 1s2 state. A

spontaneous transition to the ground state is extremely forbidden, since it needs to happen

via a two-photon transition. For example, in hydrogen the 2s→ 1s transition happens with

a spontaneous emission coefficient of 8.4 s−1, versus about 6.2× 108 s−1 for 2p → 1s. Some

people have thought about this as a good way to store energy for, e.g., rocket fuel, but the

helium would be highly explosive since collisions will rapidly depopulate the excited states.

Recommended Rybicki and Lightman problem: 10.3



Appendix: derivation of single-electron Thomas-Reiche-Kuhn sum rule

Derivations of this rule are given in many places. I like the approach taken in

http://math.stackexchange.com/questions/863310/how-to-show-thomas-reiche-kuhn-sum-

rule, which I will expand a bit. We will start with the one-dimensional case and then gen-

eralize.

The claim of the single-electron 1-D Thomas-Reiche-Kuhn sum rule is that

∑

n

fni =
∑

n

2m(En − Ei)

~2
|〈n|x|i〉|2 = 1 (23)

for a non-relativistic Hamiltonian (see comment below)

H =
p2

2m
+ V (x) . (24)

To show this, we will use commutators: for any two operators f and g, the commutator

is defined as

[f, g] = fg − gf . (25)

For example, consider the one-dimensional commutator between x and the x-momentum px,

whose operator is −i~(d/dx). Then

(xpx−pxx)ψ = −i~ [x(dψ/dx)− d(xψ)/dx] = −i~ [xdψ/dx− xdψ/dx− ψ] = −i~(−ψ) = i~ψ ,

(26)

so that [x, px] = i~ (this is actually another expression of the uncertainty principle).

As another example,
[

x p2x
2m

− p2x
2m
x
]

ψ = − ~
2

2m
(xd2ψ/dx2 − d2(xψ)/dx2)

= − ~
2

2m
(xd2ψ/dx2 − xd2ψ/dx2 − 2dψ/dx)

= (i~/m)pxψ .

(27)

Thus [x, p2x/2m] = (i~/m)px.

Also remember that any function of x commutes with any other function of x. For

example, (xV (x)− V (x)x)ψ = 0 for a potential V (x).

We can now write [x, [x,H]] in two equivalent forms:

[x, [x,H]] = x[x,H]− [x,H]x = x(xH −Hx)− (xH −Hx)x = x2H − 2xHx+Hx2 (28)

and

[x, [x,H]] =

[

x,

[

x,
p2x
2m

+ V (x)

]]

=

[

x,

[

x,
p2x
2m

]]

=
1

m
[x, i~px] = −~

2/m . (29)



Let us consider the expectation value of this quantity for the initial state i; we assume that

the states are a complete set of orthonormal functions, so that < i|n >=< n|i >= δin.

〈i|[x, [x,H]]|i〉 = −〈i|~2/m|i〉

〈i|x2H − 2xHx+Hx2|i〉 = −~
2/m

2Ei〈i|x
2|i〉 − 2〈i|xHx|i〉 = −~

2/m .

(30)

In this last step we used H|i >= Ei|i > and < i|H = Ei < i|.

To make further progress we use the closure relation in quantum mechanics
∑

n

|n〉〈n| = 1 . (31)

To prove this, we note that because the states are complete and orthonormal we can write

any function as a linear combination of the states:

|ψ〉 =
∑

n

cn|n〉 . (32)

If we multiply both sides by a particular state 〈p| and integrate, we get

〈p|ψ〉 = 〈p|
∑

n

cn|n〉 = cp . (33)

Substituting, we therefore have

|ψ〉 =
∑

n

〈n|ψ〉|n〉 =

(

∑

n

|n〉〈n|

)

|ψ〉 . (34)

Therefore
∑

n |n〉〈n| = 1 as claimed.

We therefore go back to our previous expression and use this identity to substitute:

Ei〈i|x
2|i〉 − 〈i|xHx|i〉 = −~

2/2m

Ei〈i|xx|i〉 − 〈i|xHx|i〉 = −~
2/2m

∑

n [Ei〈i|x|n〉〈n|x|i〉 − 〈i|x|n〉〈n|Hx|i〉] = ~
2/2m

∑

n [Ei|〈i|x|n〉|
2 − En〈i|x|n〉〈n|x|i〉] = −~

2/2m
∑

n
2m(En−Ei)

~2

∣

∣

∣
〈n|x|i〉

∣

∣

∣

2

= 1
∑

n fni = 1 .

(35)

We have done this for one dimension. y and z contribute the same amount as x in three

dimensions, which means that for the full 3-vector r there would be an additional factor of

3; this leads to the “easily proved identity”

2m

3~2

∑

k

(Ek − Es)
∣

∣

∣
rsk

∣

∣

∣

2

= 1 (36)



after equation (10.36) in Rybicki and Lightman. For N electrons, we get
∑

n fni = N .

So what if we consider relativistic quantum mechanics? The closure relation
∑

n |n〉〈n| =

1 was critical in our derivation, and the problem in relativistic quantum mechanics is that

we’d have to sum over negative energy states as well. The net result is that the relativistic

sum rule isn’t so nice, but it can be computed; see, for example, Sinky & Leung 2006, Phys.

Rev. A, 74, 034703.


