
Molecules

Initial questions: What are the new aspects of molecules compared to atoms? What

part of the electromagnetic spectrum can we probe? What can we learn from molecular

spectra? How large a molecule could we identify?

We now turn from atoms to molecules. For our purposes, a molecule is two or more

separate nuclei that are bonded together by an electron cloud. This introduces interesting

new effects but also some complications, so after a general overview we’ll stick to molecules

with just two nuclei.

First, Ask class: what are some qualitatively new effects introduced with molecules vis

a vis atoms, in terms of energy levels and transitions? With more than one nucleus, there

are new degrees of freedom. Unlike an atom, a molecule can vibrate (distance between nuclei

changes periodically) and rotate (distance remains same, but orientation changes). In addi-

tion to the electronic transitions that still occur, this may seem to leave an irreducible mess.

Ask class: can they think of any simplifications that might help? One is an approximation

we’ve seen several times. The nuclei are much more massive than the electrons. Therefore,

if we consider rotation or vibration as motion of the nuclei, we will assume that the electron

cloud adjusts to the new positions rapidly, meaning that the electronic configuration is al-

ways close to equilibrium during vibration or rotation. This is called the Born-Oppenheimer

approximation.

We can quantify this a bit, and in the process show that the energies of electronic,

vibrational, and rotational transitions are well separated from each other. The byproduct is

that these can be treated independently in perturbation theory, which saves a lot of effort!

Let’s first consider vibration. As we’ve done rather often, we can get an order of mag-

nitude idea about vibrational energies using a semiclassical model. In this case, we imagine

that the nuclei vibrate by moving back and forth in a potential, which we can treat as

a harmonic oscillator. In a classical harmonic oscillator we can figure out the frequency

ω =
√

k/M if we know the spring constant k and the mass M . Ask class: what is the

mass in our case? It’s roughly the mass of a nucleus. We can estimate the spring constant

if we know a typical energy E at a typical distance x; then E = 1
2
kx2. Ask class: what

typical energy and distance do we have in this case? Our rough estimate could be that the

energy is the binding energy E = mee
4/2~2 of hydrogen, and the distance is the Bohr radius

a0 = ~
2/(mee

2). Solving, k = m3
ee

8/~6, so the vibrational energy is

Evib = ~ω = ~

√

k/M ∼ (me/M)1/2mee
4/~2 ∼ (me/M)1/2Eelect . (1)

Since me/M ∼ 1/(1800A), where A is the atomic weight of the nucleus, these energies are

a few percent to a few tenths of a percent of the electronic transition energies, or tenths



to hundredths of an eV compared with a few eV for electronic transitions. Vibrational

transitions are therefore in the infrared.

What about rotation? When you think about rotation, you think about angular momen-

tum. Ask class: what is the minimum change in angular momentum something can have?

Roughly ~. Ask class: how can we use this to estimate rotational transition energies? We

can do it by estimating the rotational energy that corresponds to an angular momentum of

~ for a given molecule. If the molecule has a moment of inertia I and rotational frequency

Ω, then its angular momentum is L = IΩ and its rotational energy is 1
2
IΩ2 = L2/(2I). The

moment of inertia of a molecule of mass M and dimension a is ∼ Ma2, so the energy is of

order Erot = ~
2/(Ma2). If a ∼ a0, we then find

Erot ∼ (me/M)Eelect . (2)

These are usually in the 10−3 eV range, putting the transitions in the radio.

We are therefore fortunate in that there is a clear hierarchy of energies:

Eelect : Evib : Erot = 1 :
(me

M

)1/2

:
(me

M

)

. (3)

Such a hierarchy allows accurate treatment with perturbation theory. We’ll start out with

electronic binding of nuclei, then in the next class will consider vibrational and rotational

states.

To get a handle on electronic binding of nuclei, we need a simple approximation of

the potential as a function of separation of nuclei. We’ll start with the simplest molecule:

H+
2 , which is two protons held together by one electron. To simplify things, we’ll write the

Hamiltonian in “atomic units” in which the unit of length is the Bohr radius a0 = ~
2/(mee

2)

and the unit of energy is twice the hydrogen ground state binding energy: e2/a0 = 27.2 eV.

Suppose that the location of the first nucleus is RA, of the second nucleus is RB, and of the

electron is r. Ask class: what is the Hamiltonian? It’s

H = −∇2

2
− 1

|r−RA|
− 1

|r−RB|
+

1

|RA −RB|
. (4)

Note that, consistent with the Born-Oppenheimer approximation, we have ignored the kinetic

energy of the nuclei and have kept their positions fixed.

What next? We can try a variational approach, in which we consider a class of wave-

functions and then minimize the energy. We’ll assume that the electron is in a superposition

of the one-particle states around each proton individually:

ψ(r) = αψA(r) + βψB(r) (5)

where we assume that ψA and ψB are ground states:

ψA(r) = π−1/2e−|r−RA|

ψB(r) = π−1/2e−|r−RB | .
(6)



The π−1/2 factors in front are to ensure that the squares of the wavefunctions integrate to

1:
∫ 2π

0
dφ

∫ π

0
sin θdθ

∫∞

0
r2drψ∗

A(r)ψA(r) = 1, where in this case the wavefunctions are real so

we don’t actually need to take a complex conjugate.

To restrict things further, we can consider symmetries. Ask class: from the setup of the

problem, can we say that the total wavefunction has any particular symmetries? Since the

two protons are identical, the wavefunction must be symmetric about the midpoint of the

molecule (RA +RB)/2. Ask class: what does this imply about the possible relative values

of α and β? There are only two possibilities: either α = β or α = −β. The wavefunction is

then

ψ±(r) = C±[ψA(r)± ψB(r)] . (7)

The normalization constants C± are determined by the condition that |ψ±|2 integrates to 1

over all space. Note that in general C± could be complex, but that since we have the freedom

to choose a global phase factor exp(iφ) to multiply C± we can choose C± to be real. Rybicki

and Lightman do this integral in the solution to their Problem 11.2, but let’s fill in some of

the steps they skip. We’ll take ψ+(r) as our example; ψ− proceeds in the same way.

We want to find C+ so that

C2
+

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ ∞

0

r2dr[ψA(r) + ψB(r)]
∗[ψA(r) + ψB(r)] = 1 . (8)

Expanding out the brackets (and recognizing that the wavefunctions are real) we get

C2
+

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ ∞

0

r2dr[ψ2
A + ψ2

B + 2ψA(r)ψB(r)] = 1 . (9)

But ψ2
A and ψ2

B integrate to 1. Substituting in the expressions for the wavefunctions, we

have

2C2
+ + 2C2

+π
−1

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ ∞

0

r2dre−|r−RA|e−|r−RB| = 1 . (10)

Now let’s define R ≡ RA − RB and y ≡ |r − RA|/R, where R = |R|. In addition,

we can take advantage of our freedom in coordinate definitions to decide that θ will be

the angle between R and r − RA (it should be clear that we could make our defini-

tions with respect to RB instead if we wished). Then we define x ≡ cos θ. We can also

shift the origin of our coordinates to RA, which means that r2dr becomes R3y2dy. Fi-

nally, we note that |r−RB| =
√

(r−RB) · (r−RB) =
√

(r−RA +R) · (r−RA +R) =
√

(r−RA) · (r−RA) + 2R · (r−RA) +R2 =
√

R2y2 + 2R2yx+R2. Thus normalization

implies

C2
+(2 + 2S(R)) = 1 (11)

where

S(R) = 2R3

∫ 1

−1

dx

∫ ∞

0

y2dye−R(y+
√

y2+2yx+1) . (12)



This still isn’t an easy integral, but in their solution to problem 11.2, Rybicki and Lightman

indicate the needed transformations. We then find that

C± = [2± 2S(R)]−1/2 (13)

where

S(R) = (1 +R +
1

3
R2)e−R . (14)

We now need to minimize the energy over our class of trial wavefunctions, meaning that

we minimize the energy over R. Ask class: in quantum mechanics, how do we find the

expectation value of the energy for a given wavefunction? The expectation value of the

energy is the expectation value of the Hamiltonian

〈H±〉 = 〈ψ±|H|ψ±〉 =
∫

ψ∗
±Hψ± d

3r . (15)

Let’s write the result out in its fully gory glory, to make a point about looking for limits.

〈H±〉 =
−1 + 2(1 + 1/R)e−2R ± 2[(−1/2 + 1/R)(1 +R +R2/3)e−R − (1 +R)e−R]

2[1± (1 +R +R2/3)e−R]
. (16)

Yuck! Let’s approach this one step at a time by looking at limits. Ask class: what is the

limit of this expression as R → ∞? It’s H± = −1/2. Ask class: what does that mean?

It means that when the nuclei are separated by a great distance, the problem reduces to a

single electron around either proton, so the energy is the binding energy of a single hydrogen

atom. This makes sense. Ask class: what about the limit R → 0, for the + parity? Here

the 1/R terms dominate, giving 〈H+〉 → 1/R. It’s less obvious, but an expansion of exp(−R)
and exp(−2R) to order R2 also gives 〈H−〉 → 1/R for the – parity. Ask class: what does

this mean, physically? It means that there is strong Coulomb repulsion between the nuclei

as they come close together.

We can plot the energy expectation values for the even (+) and odd (–) parities, and look

for an energy minimum. The odd parity has no energy minimum; it goes to +∞ for R → 0,

and asymptotes from above to −1/2 (i.e., -13.6 eV) for R → ∞. The even parity, however,

does have a minimum at R = 1.3Å, for which the energy in normal units is −15.4 eV, for a

relative binding of about 1.8 eV. The real values are 1.03Åand a relative binding of about

2.8 eV. Thus, qualitatively we got it right that there is a minimum for the even but not

the odd parity, but quantitatively we missed. Note that the true energy is less than the

minimum we found with our particular trial wavefunctions, as required in variational theory.

Why is there a minimum only for the even parity? The electron serves as a bond

between the two nuclei. For the odd parity, there is zero probability of the electron being

on the midplane between the nuclei, so it can’t do any bonding. For the even parity, its

probability is maximal between the two, so bonding can happen. One reason that we didn’t



get the energy right is that in using hydrogen wavefunctions, we assume a functional form

that goes like exp(−|r − R|), whereas for He+ (i.e., one electron around two protons) it

should be exp(−2|r − R|). We can take this into account by allowing ψA(r) → ψA(ηr)

where η is some constant, and minimize the energy with respect to both R and η. With

this extra functional freedom, we can get closer to the correct value. Remember, this is

the magic of variational calculations: the true ground state wavefunction will have a lower

energy expectation value than any other wavefunction, so you can feel free to choose trial

wavefunctions any way you like.

Now let’s consider two electrons, specifically in the molecule H2. Ask class: what major

new principle arises when two, instead of one, electrons are considered? The Pauli principle,

which says that no two identical fermions may occupy the same state. This means that the

total wavefunctions of the two electrons must be antisymmetric with respect to each other.

If the spatial part of the wavefunction is symmetric (as it is in the + parity), the spin part

must be antisymmetric. Let’s use trial wavefunctions derived from the H+
2 orbitals, so that

ψs(1, 2) =
1

2[1 + S(r)]
[ψA(r1) + ψB(r1)] [ψA(r2) + ψB(r2)]χs (17)

where χs is the singlet spin wavefunction, where singlet means that the electron spins are

antialigned (hence the total spin angular momentum is zero). Let’s expand out the spatial

wavefunction and explore its meaning as r → ∞. We have

ψs ∝ [ψA(r1)ψA(r2) + ψB(r1)ψB(r2)] + [ψA(r1)ψB(r2) + ψA(r2)ψB(r1)] . (18)

Examine the first term. Ask class: as r → ∞, what does this mean? It means that both

electrons are around a single proton (either A or B), so we have a lone proton plus an H−

ion. The H− ion is loosely bound, by about 0.75 eV, so we don’t expect this term to play

much of a role. We can therefore ignore this first term; this is called the valence bond or

London-Heitler method, which gives

ψ2(1, 2) =
1

√

2(1 + S2)
[ψA(r1)ψB(r2) + ψA(r2)ψB(r1)]χs . (19)

A similar result holds for triplet states, where the electron spins are parallel to each other.

Ask class: for this triplet state, what is the parity of the spatial wavefunction? It must be

odd, so that the parity of the spatial+spin wavefunction is odd.

The full calculation is apparently ghastly, but it is found that the full binding energy

is somewhat greater than 27.2 eV, so the H2 molecule has net binding. In the case of this

molecule, it’s the singlet state that gives the greatest binding, because the electrons can play

the role of exchange particles between the protons. This is opposite to the case for atoms,

where when it’s allowed the lowest energy state is one in which the electrons have aligned

spins. The reason in that case is that the mutual electrostatic potential energy of electrons



is positive, so to lower the energy as much as possible they need to be well-separated. The

Pauli principle means that electrons with the same spin tend to avoid each other, which

lowers the positive electrostatic energy. In the molecular case, however, it’s the binding role

electrons play between nuclei that matters most. The difference in energy is tiny, though.

Incidentally, a spin 1 state (ortho) has three possible orientations. A spin 0 state (para) has

only one orientation. Thus, in thermodynamic equilibrium one expect ortho H2 states to

be three times as abundant as para H2 states, but the energy difference is so tiny that the

transition rates are small and there often is not time to reach this equilibrium.

I’ll conclude with some interesting thoughts Shu mentioned about the relation of elec-

tronic binding with other ideas. When neutrons were discovered various people (including

Heisenberg) wondered what might keep them bound to the protons in nuclei. He consid-

ered an analogy with electronic binding in molecules: maybe, he thought, the protons and

neutrons exchanged particles, and this kept them bound together. Now, if these exchange

particles (“gauge bosons”) have finite mass, this implies a force that decreases exponentially

with distance. One can see this by considering quantum tunneling; a particle with finite mass

can exist virtually, but the probability of its reaching some point decreases like exp(−r/λC),
where λC is its Compton wavelength (in contrast, zero-rest-mass gauge bosons such as pho-

tons have infinite range). From the range ∼ 10−13 cm of the strong force, Yukawa suggested

that a “meson” of mass 100-200 times the mass of an electron might be the exchange particle.

Such a particle was indeed found: the π meson. Unfortunately, this idea as such is no longer

considered the basis of the strong force, which is now understood as a “leftover” of quantum

chromodynamics, the interactions between quarks and gluons. Still, it’s an interesting road

from molecular binding to the strong force!

Recommended Rybicki and Lightman problem: 11.1


