
Tensor manipulations

One final thing to learn about tensor manipulation is that the metric tensor is what

allows you to raise and lower indices. That is, for example, vα = gαβv
β, where again we use

the summation convention. Similarly, vα = gαβvβ, where gαβ is the matrix inverse of gαβ:

gαβgβγ = δαγ , where δ is the Kronecker delta (1 if α = γ, 0 otherwise).

Another special tensor is the Levi-Civita tensor εαβγδ. This tensor is defined as being

completely antisymmetric. In flat spacetime, ε0123 = 1 if 0 is the positive time direction and

(123) is a right-handed set of spacetime basis vectors (e.g., xyz). Then εαβγδ = 1 if (αβγδ)

is an even permutation of 0123, −1 if it is an odd permutation, and 0 if any two indices are

the same. In curved spacetime, we define the metric determinant g = det||gαβ|| < 0. Then,

the Levi-Civita tensor is εαβγδ = (−g)1/2[αβγδ] where [αβγδ] is +1 for an even permutation,

-1 for an odd permutation, and zero if two indices are equal, as before. Note that the

Levi-Civita tensor may be familiar from cross products: A×B = εijkA
iBj.

Spacetime and Metrics

Now let’s get a little more concrete, which will eventually allow us to introduce addi-

tional concepts. Let’s concentrate on one particularly important geometry, the Schwarzschild

geometry (aka spacetime). It is very useful, not least because it is more general than you

might think. It is the geometry outside of (i.e., in a vacuum) any spherically symmetric

gravitating body. It is not restricted to static objects; for example, it is the right geometry

outside a supernova, if that supernova is good enough to be spherically symmetric. To un-

derstand some of its aspects we’ll write down the line element (i.e., the metric in a particular

set of coordinates). However, the coordinates themselves are tricky, so let’s start with flat

space.

Ask class: what is the Minkowski spacetime in spherical coordinates?

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) . (1)

Ask class: what is the meaning of each of the coordinates (this is not a trick question!)?

Everything is as you expect: θ and φ are the usual spherical coordinates, r is radius, t is

time. In particular, if you have two things at r1 and r2 (same t, θ, and φ) then the distance

between them is |r2 − r1|. No sweat. You could also say that the area of a sphere at radius

r is 4πr2.

Well, why all this rigamarole? It’s because in Schwarzschild spacetime things get trickier.

Now let’s reexamine the Schwarzschild line element

ds2 = −(1− 2M/r)dt2 + dr2/(1− 2M/r) + r2(dθ2 + sin2 θdφ2) . (2)

Here we are using the (initially confusing!) standard convention in GR that c = G = 1,

which is called geometrized units. In real units, for example, 2M/r would be replaced by



2GM/(rc2). Ask class: are the meanings of θ and φ changed? No, they’re the same as

always. This is guaranteed by the assumption of spherical symmetry that comes into the

Schwarzschild derivation. But what about r? Ask class: suppose dt = dθ = dφ = 0. What

is the proper distance between r1 and r2? In this case, ds = g
1/2
rr dr, so the distance is

D =

∫ r2

r1

g1/2rr dr =

∫ r2

r1

(1− 2M/r)−1/2dr . (3)

That means that if r1 = 2M , for example, the radial distance measured is rather different

than in flat space! But if you calculate the area of a sphere of radius r, you get 4πr2 as

usual, and the circumference of a circle is 2πr as usual. This is one of the most extreme

geometric indicators of the curved spacetime: “π”=circumference/diameter drops like a rock

as r → 2M !

What about time? Ask class: what is the relation between proper time dτ at r and

the coordinate time dt if dr = dθ = dφ = 0? dτ 2 = −ds2 = −gttdt2 ⇒ dτ = (1−2M/r)1/2dt.

Therefore, as r → 2M , the elapsed proper time is tiny compared to the elapsed coordinate

time. It turns out that t, the coordinate time, is the time as seen at infinity. Therefore, to

a distant observer it looks like an object falling into the horizon takes an infinite time to

do so. This is the origin of the term “frozen star” used by many until the 1970’s for black

holes. You might think, then, that if you were to look at a black hole you’d see lots of frozen

surprised aliens just outside the horizon. You actually would not, but more on that later.

Conserved Quantities in Schwarzschild Spacetime

Let’s take another look at the Schwarzschild spacetime. It is spherically symmetric. It is

also stationary, meaning that nothing about the spacetime is time-dependent (for example,

the time t does not appear explicitly in the line element; dt does, but what we mean is that

none of the coefficients of dt2, dr2, etc., depend on t). Now, in general in physics, any time

you have a symmetry (for the pedants: you actually need a differentiable symmetry) you have

a conserved quantity. Ask class: for a particle or photon moving under just the influence

of gravity, what are some quantities that will be conserved in the motion of that particle,

if the source of gravity is a time-independent point? As with any time-independent central

force, energy and angular momentum will be conserved. These follow from, respectively, the

symmetry with time and the symmetry with angle. In addition, the rest mass is conserved

(more on that later). We have three conserved quantities, and four components to the

motion, so if we knew one more we’d be set. Luckily, having spherical symmetry means that

we can define a plane of motion for a single particle, so we only have three components to

the motion (in particular, we might as well define the plane of motion to be the equatorial

plane, so that θ = π/2 and we don’t have to worry about motion in the θ direction). That

means our task is eased when we follow (and check) geodesic motion in the Schwarzschild

spacetime from the conserved quantities.



Test particle.—Here we pause briefly to define the concept of a test particle. This is

useful in thinking about the effect of spacetime on the motion of objects. A test particle is

something that reacts to fields or spacetime or whatever, but does not affect them in turn.

In practice this is an excellent approximation in GR whenever the objects of interest have

much less mass than the mass of the system; this applies, for example, to gas in accretion

disks.

We can now think some more about four-velocity. This is a good time to show a use-

ful technique, which is the computation of quantities in a reference frame where they are

particularly simple.

We’ll start with the four-momentum pα. From special relativity, you know that the time

component is E, and the space component is the ordinary 3-momentum, call it P. Let’s

consider the square of this four-momentum, pαpα = gαβp
αpβ. Assume we have gone into a

local Lorentz frame, so that gαβ = ηαβ locally (but not necessarily globally; think about a very

small portion of a sphere, which we can treat as locally flat). Then p2 = pαpα = −E2 + P 2.

Of course, we can boost into another Lorentz frame in which the particle is not moving

(assuming it’s not a photon). Ask class: what’s the square of the four-momentum then?

In that frame, P = 0, so the square is just −E2. But then the total energy is just the rest

mass energy, so pαpα = −m2c4. Now, the last step. Ask class: what kind of geometric

object is pαpα? Is it a scalar, vector, tensor, what? No free indicies, so this is a scalar and

its value is the same in any Lorentz frame. Therefore, in general p2 = −m2, so we end

up with −m2 = −E2 + P 2, or E2 = m2 + p2. With units, it’s just the famous equation

E2 = m2c4 + p2c2.

If you divide the four-momentum by the mass m you get the four-velocity u, at least for

particles with nonzero rest mass. This means that for massive particles, u2 = uαuα = −1.

This leads to a cool proof. Ask class: what is the derivative of uαuα? Since it’s the

derivative of −1, a constant, the derivative is zero! But if you write it out, the derivative

is also twice the dot product of the four-velocity with the four-acceleration. Therefore, the

four-acceleration is always orthogonal to the four-velocity (this is true in general, not just

for motion under gravity).

Note the distinction from three-acceleration. In three-space, the acceleration could have

a component parallel to the three-velocity (i.e., acceleration can speed something up or

slow it down). If the three-acceleration is perpendicular to the three-velocity, then the speed

doesn’t change; think, for example, about uniform-speed motion in a circle, where the velocity

changes but the speed doesn’t because the acceleration is always pointed at the center of the

circle, which is perpendicular to the velocity (which follows the tangent of the circle). What

we’re saying here is that the four-acceleration is always perpendicular to the four-velocity.

You don’t need to arrange this specially, and the argument is that because the magnitude of



the four-velocity is always the same, it has to be that the four-acceleration is perpendicular

to the four-velocity, in the same way that uniform speed implies perpendicularity between

the three-acceleration and the three-velocity.

What about a photon? There, the four-momentum is again p2 = −E2 + P 2, but since

for a photon E = Pc, we always have p2 = 0.

The four-velocity of a particle with mass can also be written as uα = dxα/dτ , where

τ is the proper time (specifically, dτ 2 = −ds2 in geometrized units). For a photon, it is

trickier, since ds2 = dτ 2 = 0 for a photon. We therefore need another way to describe the

motion of a photon. The way to do this is to simply define some parameter, call it λ, which

checks off the location on a given path of motion (this is called an affine parameter1). Then,

look at motion with respect to that parameter. Let’s think about the four-velocity of a

photon. uα = dxα/dλ, so the squared four-velocity is u2 = uαuα = (dxα/dλ)(dxα/dλ) =

gαβ(dxα/dλ)(dxβ/dλ) = (gαβdx
αdxβ)/(dλ)2. But the numerator is just the interval traveled

by the photon. Ask class: what is that interval? It’s zero, so (consistent with the squared

four-momentum being zero) we find that the squared four-velocity of a photon is zero.

This, therefore, is true for any spacetime at all, and even in the presence of other

arbitrary forces. For a particle with mass, the squared four-velocity is u2 = −1, and for a

photon or other massless particle u2 = 0.

Let’s see an example of how this can help us. In general, for a massive particle, ut =

dt/dτ , ur = dr/dτ , uθ = dθ/dτ , and uφ = dφ/dτ . In Schwarzschild coordinates it is also true

that ut = −e, where e is the specific energy (energy per mass) of the particle (e = 1 for a

particle at rest at infinity) and uφ is the specific angular momentum of the particle. Suppose

we have a particle in circular motion, although not necessarily Keplerian. Then there is no r

or θ motion and u2 = −1 gives us utut +urur +uθuθ +uφφ = utut +uφuφ = −1. We can put

this into a more convenient form by writing (gtαuα)ut + (gφαuα)uφ = −1. The Schwarzschild

spacetime is diagonal, so this becomes simply gtt(ut)
2 + gφφ(uφ)2 = −1. Consulting the

line element, and remembering that the inverse of a diagonal matrix is just the original

matrix but with the reciprocals of the original elements, we find gtt = −1/(1 − 2M/r) and

gφφ = 1/r2, so the specific energy is

e =
√

(1− 2M/r)(1 + u2φ/r
2) . (4)

1What is an affine parameter? I haven’t been able to find an easy physical description. In a way that might seem

circular but is not, an affine parameter is a parameterization of a geodesic such that the geodesic equation is satisfied.

If you have one affine parameter, call it λ, then λ′ = aλ+ b also works if a and b are constants. But λ′ = λ2 wouldn’t

work. One attempt at a physical explanation is that (1) the proper time is an affine parameter for particles with

nonzero rest mass, and (2) if you consider the momentum of a free particle with nonzero rest mass, pµ = mdxµ/dτ ,

and fix that momentum as m → 0, you can recognize that m/dτ remains constant, so you can call that 1/dλ where

λ is an affine parameter.



For example, for a slowly rotating star with uφ ≈ 0, the energy is e =
√

1− 2M/r. This

means that a particle of mass m originally at infinity will release a total energy m(1− e) if it

finally comes to rest on the star’s surface. Let’s check if this makes sense in the Newtonian

limit r � M . Then e ≈ 1−M/r, so the energy released is mM/r, which is the Newtonian

form (and recall that here G = c = 1, so with those constants restored we have an energy

release of GmM/r).


