
Equation of Motion and Geodesics

So far we’ve talked about how to represent curved spacetime using a metric, and what

quantities are conserved. Now let’s see how test particles move in such a spacetime. To do

this, we need to take a brief diversion to see how derivatives are changed in curved spacetime.

First, let’s simplify and go back to thinking about a flat two-dimensional plane. Consider

a scalar quantity. Ask class: pick an example of a scalar quantity. Could be temperature,

Newtonian gravitational potential, whatever. Define that quantity to be Φ. Let’s think in

terms of a Cartesian coordinate basis. The derivative along the x direction is ∂Φ/∂x, and

along the y direction is ∂Φ/∂y. We will adopt the notation that a comma denotes a partial

derivative, so these become Φ,x and Φ,y, respectively. If we want the directional derivative

along some vector v with components vx and vy, that derivative is ∂vΦ = Φ,xv
x + Φ,yv

y =

Φ,αv
α. Similarly, if we have a vector field E, its gradient is the rank 2 tensor ∇E = Eα

,β

and its directional derivative along v is the rank-1 tensor Eα
,βv

β. As always, the geometric

objects formed (e.g., gradient or directional derivative) have coordinate-free reality, but

we express them here in terms of components for concreteness. A particle moving in free

space (no forces on it) simply continues moving along in a straight line. That means that

the directional derivative of the velocity, along the velocity, is zero (this comes from, e.g.,

conservation of momentum and energy). Therefore, uα,βu
β = 0 is the equation of motion for

a free particle. All these results are also true for free motion in flat spacetime.

But what happens when the spacetime is curved? Then the coordinates themselves twist

and turn. One must take this into account by adding another term to the equation for a

derivative (you can think of this as a chain rule, if you like; the derivative of a quantity

contains one term for the partial derivative of that quantity, and another for the partial

derivative of the coordinates themselves). A result that we’ll simply have to state is that the

correction terms involve the connection coefficients. For a coordinate basis, these are

Γαβγ =
1

2
gαµ (gµβ,γ + gµγ,β − gβγ,µ) . (1)

The actual derivative itself is represented by a semicolon. The connection coefficients come

in with a + sign when the index to be “corrected” is up, and a − sign when the index is

down. Some examples:

Φ;α = Φ,α vα;β = vα,β + Γαµβv
µ

vα;β = vα,β − Γµαβvµ T βα;γ = T βα,γ + ΓβµγT
µ
α − ΓµαγT

β
µ .

(2)

Note that for scalar fields there is no correction.

What about “straight lines” in curved spacetime? These are called geodesics, and are

simply extensions of what we found in flat spacetime. That is, the directional derivative of the

velocity along itself is zero, or ∇uu = 0, so uα;βu
β = 0. If one defines some affine parameter λ



along the geodesic (the proper time τ is a good choice for particles with nonzero rest mass),

then this comes out to
d2xα

dλ2
+ Γαµγ

dxµ

dλ

dxγ

dλ
= 0 . (3)

From the definition of the four-velocity, uα = dxα/dλ, we can also write this

duα

dλ
+ Γαµγu

µuγ = 0 . (4)

We’ll explore some consequences of this in a second, but first a quick check that this is

reasonable. This is the equation of motion. So, Ask class: what kind of path should it give in

flat space? It should give a straight line, meaning that the acceleration duα/dλ = 0. Is it so?

Let’s look at the connection coefficients again. Ask class: what is the Minkowski metric?

ηαβ = (−1, 1, 1, 1). So, Ask class: what are the derivatives of the components of ηαβ? The

derivatives are all zero. Ask class: what does that imply for the connection coefficients?

They’re related to derivatives of the metric coefficients, so the connection coefficients are

zero. Therefore, Ask class: what is the equation of motion in flat spacetime? It becomes

just duα/dλ = 0, a straight line, as required.

For a Schwarzschild spacetime, let’s consider motion in the rφ plane (i.e., no θ motion,

which one can always arrange in a spherically symmetric spacetime just by redefinition of

coords). Then the radial equation of geodesic motion is (here we use the proper time τ as

our affine parameter)
d2r

dτ 2
+
M

r2
− (1− 3M/r)u2φ/r

3 = 0 . (5)

In deriving this we’ve used the fact that the specific angular momentum uφ = gφαu
α =

gφφu
φ = r2(dφ/dτ). Let’s think about what all this means. First, let’s check this in the

Newtonian limit. In that limit, M/r � 1 and can be ignored, and at low velocities dτ 2 ≈ dt2

so we get the usual expression
d2r

dt2
= −M

r2
+ u2φ/r

3 . (6)

In particular, that means that for a circular orbit, d2r/dt2 = 0, the specific angular momen-

tum is given by u2φ = Mr.

What about in strong gravity? First consider radial motion, uφ = 0. Then d2r/dτ 2 =

−M/r2. This has the same form as the Newtonian expression, but remember that the

coordinates mean different things, so you have to be careful. Now consider circular orbits.

Again we set d2r/dτ 2 = 0, to find u2φ = Mr2/(r− 3M). But wait! Something’s strange here.

That r−3M in the denominator means that the specific angular momentum goes to infinity

at r = 3M , but the horizon is at r = 2M . Have we reached a contradiction of some sort?

No, but we have happened upon one of the most important features and predictions of

general relativity. All of this implies that the specific angular momentum has a minimum at



a radius well outside the horizon. This is also the minimum radius of a circular orbit that is

stable to small perturbations, and so it is called the innermost stable circular orbit (ISCO).

Ask class: what does this mean for gas spiraling close to a black hole or neutron star?

It means that even if the gas was moving in almost circular orbits at larger distances, then

(neglecting other forces) when it reaches this critical radius it’ll go right in without having to

lose more angular momentum. This radius is called plays a fundamental role in the physics

of accretion disks around very compact objects.

Qualitatively, one can think of it like this. A fundamental feature of the Schwarzschild

geometry is the so-called “pit in the potential”. That is, near a compact object gravity

is “stronger” than you would have expected based on an extrapolation of the Newtonian

law. To compensate for this, the angular velocity has to be higher than it would have been

otherwise, so the angular momentum is higher than it would have been in the Newtonian

limit, and eventually uφ reaches a minimum and then increases as the radius is decreased

further. This predicted behavior is an example of a phenomenon that only occurs in strong

gravity, and so can only be tested by observing compact objects.

If we plug the uφ for a circular orbit into the formula for specific energy we found earlier,

we find

−ut(circ) =
r − 2M√
r(r − 3M)

. (7)

At the ISCO, −ut =
√

8/9, so 5.7% of the binding energy is released in the inspiral to this

point.

Now let’s do another sample calculation. We argued above that to compensate for the

stronger gravity, particles have to move faster near a compact object. That would suggest

that the angular velocity observed at infinity would be higher than in Newtonian gravity.

However, there is also a redshift, which decreases frequencies. Let’s calculate the frequency

of a circular orbit observed at infinity, to see which effect wins.

We said a while back that the Schwarzschild time coordinate t is simply the time at

infinity, and the azimuthal coordinate φ is also valid at infinity (in fact, unlike t, φ has

constant meaning at all radii). Therefore, the angular velocity is Ω = dφ/dt. To calculate

this, we relate it to components of the four-velocity: dφ/dt = (dφ/dτ)/(dt/dτ) = uφ/ut.

Now, we express this in terms of our conserved quantities uφ and ut:

uφ

ut
=
gαφuα
gαtuα

=
gφφuφ
gttut

=
uφ/r

2

−ut/(1− 2M/r)
. (8)

Then

Ω =
1− 2M/r

r2
uφ
−ut

=
1− 2M/r

r2

√
Mr2/(r − 3M)

(r − 2M)/
√
r(r − 3M)

=
√
M/r3 . (9)



This is exactly the Newtonian expression! By a lovely coincidence, in Schwarzschild coor-

dinates the angular velocity observed at infinity is exactly the same as it is in Newtonian

physics.

We’ve taken a long diversion here to discuss the radial component of the equation of

geodesic motion and some of its implications. Let’s briefly consider the azimuthal component,

specifically uφ;αu
α = 0. This can be expressed as

duφ
dτ

+??? = 0 . (10)

We can certainly go through the same procedure of calculating the connection coefficients.

But here is a place where we should apply our intuition to shortcut those calculations.

Recalling that uφ is the specific angular momentum, and that we are considering geodesic

motion (no nongravitational forces), Ask class: what should the “???” be in this equation

for the Schwarzschild spacetime? It should be zero! Angular momentum is conserved for

Schwarzschild geodesics, so duφ/dτ had better vanish. You can confirm this explicitly if you

want.

One last note about geodesics is that they represent extrema in the integrated path

length ds2 between two events. The reason for this is extremely deep and ultimately comes

down to the same reason that optical paths are extrema in length. Basically, if you represent

light as a wave, then two paths with different lengths will have different numbers of cycles and

hence different phases along the way. With different phases, there is destructive interference

and the amplitude is small. Only near an extremum, where nearby paths differ in path

length by a small second-order quantity, are the phases close to each other, so only there

is the interference constructive and the amplitude high. For massive particles the principle

is the same, according to quantum mechanics. Again, a particle can be represented by a

wave (or a wave function), and again if nearby paths have significantly different phases the

interference will be destructive. Only near an extremum is the amplitude high. For this case,

however, it isn’t simply the length of the path, but instead the integral of the Lagrangian

that matters (this integral is called the action). Extremization of the action is one of the

unifying principles of physics, and provides (for example) a different way of looking at general

relativity than the geometric approach we’ve taken.

We can write the four-acceleration aα as aα = uα;βu
β, so that the geodesic equation of

motion is aα = 0. If there is a force fα on a particle of rest mass m, the resulting equation

of motion (and the fully general one, in general relativity) is aα = fα/m, which is a nice

return to good old F = ma!

Orthonormal Tetrads

Let’s now return to a subject we’ve mentioned a few times: shifting to a locally Minkowski

frame. In general, you want to take a metric that looks like gαβ and shift into a frame such



that locally the metric is ηαβ = (−1, 1, 1, 1). It is conventional to represent the new coordi-

nates with hats (e.g., t̂, r̂, θ̂, φ̂), so that

ds2 = −dt̂2 + dr̂2 + dθ̂2 + dφ̂2 . (11)

The transformation from the local to the global coordinates is done with the transformation

matrices eα̂β and eα
β̂
. For example, uα = eα

β̂
uβ̂. The components of the transformation

matrices come from the transformation of the metric tensor:

ηα̂β̂ = eµα̂e
ν
β̂
gµν . (12)

This is especially easy for the Schwarzschild metric, because the metric is diagonal. Then,

for example, et
t̂

= (1 − 2M/r)−1/2 and eφ
φ̂

= r−1. Note that even after having transformed

into a reference frame in which the spacetime is as Minkowski as possible (i.e., first but not

second derivatives vanish), there is still freedom to choose the coordinates. Also, remember

that there is always freedom to have Lorentz boosts; that is, having found a frame in which

the spacetime looks flat, another frame moving at a constant velocity to the first also sees

flat spacetime. This means that your choice of frame (“orthonormal tetrad”) is based to

some extent on convenience. Around a spherical star, a good frame is often the static frame,

unmoving with respect to infinity.

Now let’s see some examples of this in action. Suppose a particle moves along a circular

arc with a linear velocity in the φ direction vφ̂ as seen by a static observer at Schwarzschild

radius r. What is the angular velocity as seen at infinity? vφ̂ = dφ̂/dt̂ = uφ̂/ut̂. But this is

eφ̂φu
φ/
[
et̂ tu

t
]
. Since Ω = dφ/dt = uφ/ut, then

Ω = (et̂ t/e
φ̂
φ)vφ̂ =

(
vφ̂

r

)
(1− 2M/r)1/2 . (13)

This makes sense; it’s just the same as one would calculate in the Newtonian limit, except

that the frequency is less because of redshifting.

Here’s another example, which combines local frame calculations with more global

analysis. Suppose you have a particle at rest at infinity, and you drop it radially into a

Schwarzschild black hole. What is the radial velocity as seen by a local static observer at

radius r? The particle being at rest at infinity means that its total energy is ut = −1. Radial

motion has θ and φ components zero, so u2 = −1 means

urur + utut = −1

grr(u
r)2 + gttu2t = −1

(ur)2/(1− 2M/r)− 1/(1− 2M/r) = −1

(ur)2 = 2M/r .

(14)



Therefore, ur = dr/dτ = 2M/r. The radial velocity seen by a local static observer is

vr̂ = ur̂/ut̂

= −ur̂/ut̂
= −er̂rur/(et t̂ut)
= −(1− 2M/r)−1/2ur/[(1− 2M/r)−1/2ut]

=
√

2M/r .

(15)

Therefore, the locally measured radial velocity is just the same as the Newtonian expression,

when Schwarzschild coordinates are used. By comparison, the radial velocity as measured

at infinity is

vr =
dr

dt
= ur/ut = ur/(gttut) = (1− 2M/r)ur = (1− 2M/r)

√
2M/r . (16)

This drops to zero at the horizon. Note that there is one factor of (1 − 2M/r)1/2 from the

redshift and one from the change in the radial coordinate.


