
Accretion Disks

Angular momentum

Now let’s go back to black holes. Black holes being what they are, something that falls

into one disappears without a peep. It might therefore seem that accretion onto a black hole

would release no energy. It isn’t the case, however, and the reason has to do with angular

momentum.

Thinking in terms of Newtonian gravity, suppose you have a point source of mass. Ask

class: taking gravity into effect, is it possible to hit the mass with another point particle?

No, it isn’t. Your aim would have to be perfectly good. In reality, however, there will always

be some lateral component of the motion of the projectile (i.e., there will always be nonzero

angular momentum). This will cause the projectile to deviate more and more from a radial

trajectory as it gets closer; this is a consequence of the `2/r3 term in the radial equation

of motion. In practice, for compact objects and often even for normal stars, the angular

momentum of matter is sufficient to ensure that there is not direct radial accretion. Of

course, along the axis of rotation there is less centrifugal support, so this tends to form a

disklike structure (the accretion disk).

Now, imagine that you have lots of such projectiles moving around the central mass. If

they don’t interact, their orbits will be unaffected by the presence of other projectiles. But

if in reality the “projectiles” are streams of gas, they will collide with each other. This will

tend to circularize the motion. But will anything happen once the motion is circularized?

Disks usually rotate such that each fluid element is moving almost (but not exactly!)

in a circular orbit. If there were no interactions between fluid elements, Ask class: what

would the angular velocity be as a function of radius? Ω ∝ R−3/2, so there is a shearing

flow. This means that coupling between adjacent radii exerts a force. Ask class: given

that the outer parts rotate more slowly, in which direction will the force be and what will

be the effect on the angular momentum and on the movement of mass? Inner tries to speed

up outer, giving it a higher velocity. This increases the angular momentum of the outer,

decreases the angular momentum of the inner, so net result is that angular momentum is

transferred outwards and mass flows inwards (some subtleties, of course). The disk spreads

as a result. Mention: this has similarities to the effect of “shepherd moons” except there

the coupling is purely gravitational.

So, gas moving towards a massive object has a tendency to circularize, form a disk, and

spread inward and outward. This is an “accretion disk”. If the massive object has a surface,

then often the matter spirals in until it hits the surface or interacts with the stellar magnetic

field, whichever comes first. But a black hole has neither a surface nor a magnetic field.

However, strong-gravity effects of general relativity mean that the gas can’t spiral all the



way to the horizon, either. This is because of the ISCO, which we have discussed before.

Particles spiraling inwards will release little energy inside the ISCO, so the efficiency is just

the binding energy in nearly circular orbits there. This is 6% of mc2 for a nonrotating black

hole, and up to 42% for a maximally rotating black hole.

Therefore, the accretion efficiency for black holes can in principle be the highest accretion

efficiencies in astrophysics. Unlike stars, for black holes all the emitted energy must come

from the accretion disk. We will therefore take a closer look at accretion disks.

One model of disks, which has many advantages (e.g., it is robust and does not depend

on too many parameters) is one in which the disks are geometrically thin but optically thick.

Let’s think about the conditions for this to occur.

First, we make the assumption (standard for all models of accretion disks) that the disk

itself has negligible mass compared to the central object. One aspect of that is that the

gravity in the disk is dominated by the gravity of the central object, not the gas in the

disk itself. On the other hand, pressure forces within the disk are not necessarily negligible.

Quantifying this, Ask class: what is the equation of hydrostatic equilibrium? In general

it is ∇P = −ρg, where g is the local acceleration of gravity. We make another standard

assumption, which is that the gas is orbiting in almost Keplerian orbits. That means that

we can focus on the z component (normal to the disk plane) of the hydrostatic equation.

If the central object has mass M and the fluid element of interest is an angle θ out of the

plane, then (draw diagram) the equation becomes
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Let’s call H the half-thickness of the disk; H � r for a thin disk. To rough accuracy,

dP/dz = −P/H and sin θ = H/r. Then
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Since v2K = GM/r, this means that the sound speed is cs ≈ (H/r)vK . Therefore, the thin disk

condition H/r � 1 implies (and is implied by) the condition that the sound speed is much

less than the orbital speed. The sound speed increases with temperature, which increases

with luminosity, which increases with accretion rate, so here we have an early warning that

at high enough accretion rates the thin disk approximation is likely to break down. “High

enough” turns out to mean near the Eddington luminosity. This is not a surprise, because

near the Eddington luminosity radiation forces are strong enough to significantly modify the

behavior of matter, and so having them puff up the disk is reasonable.

Temperature distribution of a thin disk



Now let’s take a first stab at what the temperature distribution of a thin disk should

be. In a moment we’ll do things more carefully, and find a surprising factor of 3.

Ask class: suppose that as each fluid element moves inward that it releases its energy

locally, and that its energy is all gravitational. How much energy would an element of mass

m release in going from a circular orbit at radius r + dr to one at radius r? Gravitational

potential energy is Eg = −GMm/2r, so the energy released is GMmdr/2r2. Warning:

presaging here is where the mysterious factor of 3 comes in. It turns out that in reality,

far from the inner edge of a disk, the local energy released is a factor of 3 greater than that,

due to viscous stresses associated with the transport of angular momentum. However, let

us now focus on just the radial dependence, writing dEg ∼ GMmdr/r2. That means that

the luminosity of this annulus, for an accretion rate ṁ, is dL ∼ GMṁdr/r2. Ask class:

what is the temperature, assuming the annulus radiates its energy as a blackbody? For a

blackbody, L = σAT 4. The area of the annulus is 2πrdr, and since L ∼ Mṁdr/r2 we have

T 4 ∼Mṁr−3, or

T ∼
(
Mṁ

r3

)1/4

. (3)

Therefore, the temperature increases as the fluid moves in. Another point is that from this

equation we can see general scalings with the mass M of a central black hole. Ask class:

suppose we have two nonrotating black holes, of mass M1 and M2, both accreting at the

Eddington rate. What is the scaling of the temperature at, say, r = 10M with the mass?

The effects of general relativity depend on r/M , so suppose that we are interested in r = xM

(for example, x = 6G/c2 for the innermost stable orbit). Also, as we saw last lecture, the

Eddington limiting luminosity scales with M , so suppose that the luminosity is L = εLE,

implying that ṁ ∝ εM . The temperature is then T ∝ (MεM/(xM)3)1/4 ∼ M−1/4. This

shows that as black holes get bigger, emission from their accretion disks get cooler, all else

being equal. For example, a stellar-mass black hole accreting at nearly the Eddington rate

has an inner disk temperature near 107 K, but a supermassive 108 K black hole accreting

near Eddington has only a 105 K temperature.

Thin disks; more careful treatment

The simple treatment above neglects one very important point: if angular momentum

is transported outwards, energy is as well. That means, qualitatively, that some of the

gravitational energy released in the inner regions emerges as luminosity only in the outer

regions. To derive this, we’ll use an approach in some of Roger Blandford’s notes, focusing

on three conserved quantities: rest mass, angular momentum, and energy.

First, we assume the equation of continuity: the mass accretion rate is constant as a

function of radius, so

Ṁ = 2πrΣvr = const (4)



where Σ is the surface density and vr is the inward radial velocity.

Second, we treat angular momentum conservation. Assume for simplicity that the radial

velocity is small and that the Newtonian form for angular momentum holds. Assume also

that there is an inner radius rI to the disk, and that no more angular momentum is lost

inside that (for example, this might be thought a reasonable approximation at the ISCO).

Then angular momentum conservation implies that the torque exerted by the disk inside

radius r on the disk outside that radius is

G = Ṁ
[
(Mr)1/2 − (MrI)

1/2
]
. (5)

Third, energy conservation. The release of gravitational binding energy per unit time is,

as we already saw, Ėg = −Ṁd(m/2r). In addition there is a term due to viscous interactions.

At a radius r where the angular velocity is Ω = (M/r3)1/2, the rate of work done on the

inner surface of an annulus is −GΩ, and the net energy per time deposited in a ring is

Ėv = −d(GΩ). The sum of the two is the luminosity released in the ring, dL = Ėg + Ėv.

Evaluating this and replacing the Newtonian constant G we have
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Whoa! Hold on here! This is different than what we might have expected. Far away

from the inner edge rI , this means that the local energy dissipation rate is three times the

local release of gravitational energy. Where is the extra energy coming from? If we integrate

L(r) over the whole disk, we find that it gives GṀm/2rI , as expected if the matter ends up

in a circular orbit at radius rI . However, close to rI the energy dissipation rate is less than

the local gravitational release. Therefore, what is happening is that matter near the inner

part of the disk mas much of its energy going into transport of angular momentum rather

than release of energy, and the extra energy is released further out. This factor of three was

missed at first, but was pointed out by Kip Thorne.

Note, by the way, that this expression does not include the viscosity. That’s why it was

possible to do the derivation without specifying the viscosity.

Origin of viscosity

The Reynolds number is defined as R = V L/ν, where V is a typical velocity in a fluid

system, L is a typical dimension, and ν is the kinematic viscosity. When R � 1 the fluid

motion is turbulent. The kinematic viscosity is approximately ν = csλ, where cs is the sound

speed and λ is a particle mean free path, so R = (V/cs)(L/λ). In accretion disks, the density

is usually of order 1 g cm−3 (plus or minus a couple orders of magnitude), so the mean free

path λ is much smaller than the system size L. Also, as we found earlier, the velocity is much



greater than the sound speed for a geometrically thin disk, so V � cs. Then R� 1 and the

fluid is expected to flow turbulently. That means that the viscosity is a turbulent viscosity.

Calculations of microscopic viscosity indicate that this is much too small. However, in the

last decade it has been shown that magnetohydrodynamic effects can do it.

In particular, the magnetorotational instability, by which weak magnetic fields are am-

plified by differential rotation, gives the required viscosity. To understand the general prin-

ciples, imagine that we have two masses m1 and m2 in circular orbits at radii r1 and r2 > r1
around a mass M , and connected to each other by a spring with spring constant k. The

mass m1 moves with a higher angular frequency than the mass m2. Therefore, as it moves,

it exerts a force on m2 that increases the angular momentum of m2, and similarly m2 retards

the motion of m1 and reduces its angular momentum. What happens next depends on the

strength of the spring. If the spring is extremely strong (e.g., if we imagine it actually to be

a rigid rod), then the two move along in a sort of compromise orbit, but nothing else would

happen in particular. If instead the spring is weak, a surprising effect occurs. The increase

in angular momentum of m2 means that its orbital radius increases, and similarly the orbital

radius of m1 decreases. Their angular velocities are therefore even more different than they

had been before, so the process runs away. One can show that if the angular velocity at some

radius is Ω0 and m2 � m1 then the dispersion relation leads to a characteristic equation

(i.e., one in which a perturbation evolves as ∝ eαt)

α4 +
(
Ω2

0 + 2k/m2

)
α2 − (k/m2)

(
3Ω2

0 − k/m2

)
= 0 . (7)

It is left as the dreaded “exercise for the student” to determine the condition on k needed

to ensure a runaway solution as opposed to an oscillatory one.

That’s the magnetorotational instability. For weak magnetic fields in a disk with rea-

sonable ionization, the field is stretched and amplified, in fact in a turbulent way, and the

result is that angular momentum is transported outward and matter is transported inward.

Ask class: what effects might stop the growth of the field? Reconnection, i.e., geometric

reorganization of the field, does the job, as would other forms of dissipation.

In practice, it is common to simply parameterize the viscosity by writing it ν = αcsH,

where H is the scale height of the disk (this was done by Shakura and Sunyaev). Here α is

a dimensionless constant, less than but comparable to unity, and the disks are called “alpha

disks” as a result. The major physical effect that this does not include is turbulence, but

many applications can be modeled nicely with this simplification.

Caveats and thick disks

Before departing this subject, some caveats. First, note that for high luminosities, with

puffed-up disks, the thin disk approximation is no longer good. Second, there has been a

lot of work in the past decade showing that even at low accretion rates there is another



solution: a geometrically thick, optically thin disk. In particular, the energy release of gas

near the black hole is so large that (at least energetically) it can drive a large wind off of the

outer portions of the disk, meaning that ṁ is not constant with radius. Observations are

inconclusive, and which solution actually operates when is an open question. Keep alert!


