
Clusters: Context and Background

We’re about to embark on a subject rather different from what we’ve treated before, so it

is useful to step back and think again about what we want to accomplish in this course. We

have been accumulating a set of tools with which we can approach problems in high-energy

astrophysics. For a given situation we should be able to ask some fundamental questions

about the reliability of the answers. For example, if we read a paper about black holes we

should ask “will general relativity be important”? If so, do the authors apply it correctly?

Ask class: what are a couple of questions one might, similarly, ask about neutron stars?

For neutron stars we can also ask about GR, and also ask whether strong magnetic fields

may play a role. This means that if we see a paper about merging neutron stars that treats

gravity in the Newtonian limit, we should be suspicious about the results.

Development of physical insight is improved if we consider a variety of physical regimes.

In this course we’ve thought about extremely high densities and strong magnetic fields, which

are not in the normal run of environments considered even in astrophysics. In the same spirit

of broadening our exposure to different regimes, we will consider in the next three lectures

a very different environment, yet one that also has been illuminated greatly by high-energy

observations. This is the subject of clusters of galaxies. Clusters have great importance

in a variety of contexts, but especially as probes of cosmology and of the formation of the

first structure in the universe. This will therefore bring in many topics and questions that

we have not yet considered. In this lecture we’ll think primarily about context, in the next

lecture we’ll talk about the observational properties and what they imply, and in the third

lecture we’ll talk in detail about the Sunyaev-Zeldovich effect, which is a growing field with

many cosmological applications.

Quick review of properties

Before heading into the context, here’s a quick summary of some of the properties of

clusters of galaxies. Clusters were first cataloged in a systematic way by Abell in 1958. He

identified some 1700 clusters on the Palomar Observatory Sky Survey plates, by eye, and

produced a richness criterion based on the galaxy count within a radius of 1.5h−1 Mpc,

where h = H0/100 km s−1 Mpc−1 ≈ 0.7. In such a volume, a cluster typically contains

∼ 103 galaxies (compared with < 1 in a similar average volume in the universe), has a

mass M ∼ 1014−15M�, a gas temperature T ∼ 107 − 108 K, and a total (bolometric)

luminosity L ∼ 1043−45 erg s−1. The number density of clusters in the local universe is

about ncl ≈ 10−5h3 Mpc−3. Approximately 10% of galaxies are in clusters, the rest being

“field” galaxies. Although “clusters of galaxies” were first discovered optically, by the, well,

clustering of galaxies, galaxies comprise a small fraction of the total mass; most of the mass

is actually dark matter (i.e., a collisionless component that is not specifically identified), and



most of the rest is in hot gas spread throughout the cluster. It is worth keeping in the back

of your mind that the inference of some of these quantities is not a straightforward thing,

and that, e.g., getting the mass of a cluster can be tricky. In fact, Ask class: what are ways

in which cluster mass could be inferred? Typically one gets the mass from (1) motions of

galaxies within the cluster, assuming they are bound, (2) the temperature of the gas, and

(3) gravitational lensing. The approximate agreement of all of these is encouraging.

Cosmology

As we said earlier, clusters have many cosmological implications. To understand them

better, we’ll skim the surface of a few important aspects of cosmology.

The first, and most important, thing is that the universe is expanding. As you may

remember, it was this prediction of general relativity that caused Einstein to balk and intro-

duce the cosmological constant. The line element for the expanding universe can be written

in many ways, one of which is

ds2 = −dt2 +
dr2

1 + kr2/R2
+ r2(dθ2 + sin2 θ dφ2) . (1)

Here k = −1, 0, or 1 and the angular part indicates that this is a universe with spherical

symmetry. In this expression R is the radius of the universe, and is time-dependent. k = 0

indicates a spatially “flat” universe, which will barely expand forever, k = −1 indicates a

“closed” universe that will eventually recollapse, and k = 1 indicates an “open” universe,

which will expand forever with some room to spare. Incidentally, the time-dependence of R

means that there is no global energy conservation in an expanding universe. If this shocks

and horrifies you, note that the stress-energy tensor does still obey the conservation law

∇·T = 0, so it’s not as if we have abandoned all such laws! One of the fundamentally useful

quantities in cosmology is the redshift z, which is defined as 1 + z equaling the ratio of the

measured wavelength to the wavelength in the emitter’s rest frame.

Much about the evolution and fate of the universe can be encompassed in just a few

numbers. These are usually described in terms of their present-day contributions. It is, for

example, of interest to know if the universe will expand forever or ultimately recollapse. For

this, one can define three related parameters. One is the total mass density of nonrelativistic

matter relative to a critical density, Ωm = ρ/ρcrit. If there is nothing else in the universe

but ordinary matter, Ωm < 1 means an open universe, Ωm > 1 means a closed universe, and

Ωm = 1 means a flat universe. Similarly, we can define the radiation energy density divided

by the critical density as Ωr, the neutrino energy density divided by the critical density as

Ων , and so on. We can also define a curvature parameter ΩR, such that ΩR > 0 means an

open universe, ΩR < 0 means a closed universe, and ΩR = 0 means a flat universe. Finally,

one can define a similar contribution from the cosmological constant, ΩΛ (or more generally



from dark energy). The sum of all of these is unity, Ωm + Ωr + ΩΛ + ΩR + . . . = 1, at

any redshift. At high redshift, regardless of what Ωm, Ωr, ΩΛ, ΩR, . . . are now, the universe

acts as if ΩR ≈ 0. Moreover, at 10 <∼ z <∼ 1000, Ωm is the most important component, at

z >∼ 10000 Ωr is the most important component, and there is a transition in between; ΩΛ is

only important at z <∼ 1. These orderings are important to remember, because they simplify

things dramatically at redshifts z >∼ 10.

Another important constant is the Hubble constant, which measures the current rate of

expansion of the universe. This, by the way, is a misnomer, because the Hubble constant

isn’t constant with redshift; at any given age of the universe, it is constant with location.

The effects of the expansion of the universe are many. One of them is something we

encountered briefly in the gravitational lensing lecture: whereas at low redshifts distance

can be measured in many independent ways that all agree with each other (e.g., luminosity

distance, angular diameter distance, proper distance, and so on), at high redshifts they

diverge from each other and you have to be very careful about which one you’re using at a

given time. For example, when people report the evidence for dark energy from supernova

observations, they’re using a luminosity distance. This is defined as the distance one would

have to go in Euclidean space in order to make an object appear as faint as it does at the

given redshift. Even though the proper distance (i.e., measured with a ruler from you to the

object of interest) approaches a constant value as z →∞, the luminosity distance does not,

because due to redshifts the flux drops as (1 + z)−2 (one factor from the lowered energy of

the photons, one from the lowered rate of reception of photons). The effect on flux can be

expressed with the distance modulus. For an Einstein-de Sitter universe, in which Ωm = 1

and ΩΛ = ΩR = 0 currently (and for all time), the distance modulus is

m−M = 25 + 5 log10

[
6000(1 + z)(1− (1 + z)−1/2)

]
− 5 log10 h . (2)

Recall that the absolute magnitude M is as measured at a distance of 10 pc, and that

5 magnitudes larger means fainter by a factor of 100. Using this, one can figure out the

distance if the true luminosity is known. When ΩΛ 6= 0 the expression is changed, and

it is the apparent deviation from the Ωm = 1 form that is the evidence for a nonzero

cosmological constant. The current best guess is that presently Ωm ≈ 0.3, ΩΛ ≈ 0.7, and

ΩR = 0. Remember, though, that although the cosmological constant may dominate now,

at higher redshift the matter contribution is most important. In fact, with increasing z the

matter part scales like Ωm(1 + z)3, whereas the cosmological constant term is just ΩΛ (both

need to be normalized so that Ωm + ΩΛ + ΩR = 1, and if ΩR = 0 now it was always so and

will always be so).

Our final bit about general cosmology is dark matter. One of the grand successes of the

Big Bang model is that it predicts the abundances of light elements. Hydrogen, deuterium,

helium 3 and 4, lithium 6 and 7, and beryllium were produced in the first few minutes, and



their relative primordial abundances are all related to just one parameter: the fractional

contribution Ωb of baryons relative to the critical density. Measurements of primordial

abundances are tough, but the best current estimate is that Ωb ≈ 0.02h−2 (with an average

physical density of 3.6 × 10−31 g cm−3). Since the overall matter budget is Ωm = 0.3,

this means that 80-90% of matter must be something other than baryons. Other evidence

suggests that this matter must be effectively non-self-interacting and non-luminous, and is

therefore called “dark matter”. One must, however, be careful, because the evidence for all

this, though highly suggestive, is far from a done deal.

Structure formation

But what does all this have to do with clusters, you may ask? Patience, we’re getting

there! Clusters are among the largest gravitationally bound systems in the universe, so we’d

like to know how they formed. This brings up the more general issue of structure formation:

evidence is that early in the universe, the universe was astonishingly uniform. Now, of course,

it isn’t (we are more than 30 orders of magnitude denser than the average density of the

universe). How did this happen?

Let’s think first about gravitational collapse in a region where there’s no funny business

about an expanding universe. Suppose we also ignore pressure, so nothing can stop the

collapse. Then a slight overdensity will lead to collapse. Ask class: what, approximately,

will be the time scale of the collapse? It will be comparable to a free fall time scale. Since

the free fall timescale goes like
√
r3/GM , as the region collapses (i.e., r decreases) the time

scale decreases, and there is a rapid and exponential collapse.

But what happens in an expanding universe? Ask class: qualitatively, what are the

differences? Then, if the overdensity is slight, so that δρ/ρ� 1, the matter tries to collapse

but the universe expands from under it. The result is that the fractional overdensity increases

(because, relative to the background density, an overdense region won’t expand as fast), but

as long as δρ/ρ� 1, the locally measured size of the region actually increases. This is a very

different situation from collapse on a static background. It is useful in this and many other

contexts to introduce a scale factor for the size of the universe, a(t), which is normalized to

be unity in the present day. Note that a ∝ (1 + z)−1. Then, for linear collapse (δρ/ρ� 1),

δ ∝ a. That is, the fractional overdensity of a linear region increases proportionally to the

size of the universe. This is much slower collapse than it would be in a static universe,

and it means that the initial size of perturbations at z ≈ 1000, where radiation decoupled

from matter, had to be of the order of 10−5 on angular scales of a few degrees, otherwise

gravitational instability would not have had time to form structure at z of a few.

The cosmic microwave background, which comes from z ≈ 1000, is a wonderful record of

the early days when all perturbations in the universe were linear. This is very simple to treat



compared to the current nonlinear universe. Note that, as in the case of black holes, “simple”

does not mean “mathematically trivial”. It just means that there are a limited number of

variables one must consider, so it is possible to do a more mathematically rigorous and (in

principle) trustworthy set of analyses than in the current universe, where things are really

complex. The information contained in the CMB is potentially a goldmine, which is why

there is so much current effort directed toward measuring it. Generally, an important thing

to remember is that (with lots of details!) the initial fractional amplitude of perturbations at

small length scales tends to be greater than at large length scales. Therefore, all else being

equal, small things form before big things in this picture.

At some point, structures will become nonlinear (δρ/ρ >∼ 1). Their further development

depends on a number of factors. Ignoring everything else, when a mass concentration be-

comes nonlinear, the further collapse proceeds more quickly than before because the universal

expansion is of diminishing importance compared to the contraction, so when a perturbation

becomes strongly nonlinear the collapse is almost the same as it would have been on a static

background. Therefore dark matter, if it is cold and pressureless, will continue contracting

for a while. The baryons, however, may or may not. Ask class: what could stop the

contraction for baryons? Their self-pressure may be able to stall contraction. This happens

if the mass of the region is less than the Jeans mass, which is the mass at which a sound

wave can cross the region faster than the free-fall time (i.e., compression by gravitational

contraction creates an acoustic compression wave, which tries to expand; equivalently, it is

the mass such that the total energy is negative [the negative gravitational potential energy

outweighs the positive thermal energy]). Numerically, in a region with temperature T and

number density n, the Jeans mass is

MJ ≈ 5× 107 M�(T/104 K)3/2(n/1 cm−3)−1/2 . (3)

In the early universe, from z ∼ 1000 to z ∼ 50−100, the baryons have a temperature tightly

coupled to the temperature of the cosmic microwave background, Tr = 2.7(1+z) K, and thus

in that era the Jeans mass was independent of redshift, and had a value ofMJ ∼ few×105M�.

At lower redshifts, the matter temperature decreased below Tr and thus the Jeans mass

decreased to a few times 104 M�. The first structures may therefore have had masses

comparable to this mass. Later, larger structures formed. The first structures are thought

to have formed at redshifts ∼ 30, but larger, galactic-mass, structures probably needed to

wait until z ∼ 10 (probing this era is a major goal of studies using the James Webb Space

Telescope). Clusters, with masses ∼ 1014−15M�, formed significantly later yet, and their

formation and history relates to the values of Ωm and ΩΛ, because unlike the formation of

smaller objects, clusters formed at a time when dark energy was dynamically important.

The last point about structure formation is that even dark matter does not collapse

to a point. Ask class: even if the dark matter does not interact with itself in any way

but gravitationally, what might stop the collapse? It will have some relative motion or



rotation, so it collapses until it virializes, that is, until orbital velocities are comparable to

radial velocities. This probably happens when the overdensity δρ/ρ ∼ 200. When this does

happen, it appears likely that the first highly nonlinear structures to form are not spheres,

but are instead flattened: Zeldovich “pancakes”. It is thought that these pancakes then

collapse along another axis to form spindles, and finally along that axis to eventually reach

equilibrium as approximate spheres. There are numerous large-scale simulations that explore

such structure formation extensively.


