
Energy Losses and Gravitational Radiation

Energy loss processes

Now, we need to consider energy loss processes. Ask class: what are ways in which

high-energy particles can lose energy? Generically, can lose energy by interacting with

photons or other particles, or by interacting with a field and radiating. Let’s break it down.

First, interaction with photons (inverse Compton scattering). Ask class: would they expect

protons or electrons to lose more energy by scattering with photons? Electrons have a much

larger cross section, so they do. Now, interaction with particles. Electrons can interact

with other electrons or with protons, but at ultrarelativistic energies these cross sections

are relatively small. For protons, as we saw in the last lecture they can scatter off of other

protons or nuclei. In such interactions the strong force is involved, and the cross section

is something like ∼ 10−26 cm2. Ask class: what does the column depth have to be for

optical depth unity? The reciprocal of this, or about 1026 cm−2. That’s a lot! So, in a

dense environment, collisions with particles can sap energy from high-energy particles. But

what if the environment is low-density? Then, as we’ve argued, acceleration of particles

to ultrarelativistic energies means that magnetic fields are present. In fact, the fields need

to be strong enough to confine the particles as well (otherwise they escape without further

gain of energy). Therefore, interaction of the particles with the field can produce radiation,

diminishing the particle energy.

Curvature radiation.—First, suppose that the particle is forced to move along magnetic

field lines with curvature radius R. As we found in the last lecture, the power radiated by

a particle moving at a Lorentz factor γ À 1 is P ≈ (2e2c/3R2)γ4. A relativistic particle of

charge e moving along an electric field E receives a power eEc from the field. Equating the

power gain and power loss, the limiting Lorentz factor is

γ < 2 × 107R
1/2
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4
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where R = 108R8 cm and E = 104E4sV cm−1. For a supermassive black hole with R =

1014 cm, γ might get up to 2 × 1010 (note the weak dependence on E ; also, the required

magnetic field for E4 À 1 would be unrealistically high for a supermassive black hole). This

would give a proton an energy of 2×1019 eV, which sounds high but is a factor of 10 short of

the highest observed energies. For a neutron star with R = 106 cm and E = 1012, γ < 2×108.

So it sounds bad. Ask class: but is curvature radiation always relevant? What if you have

a very high-energy particle? Then, the particle doesn’t follow the field lines. Remember that

curvature radiation and synchrotron radiation are both just types of acceleration radiation.

If a particle is moving in a straight line, it radiates very little. So, the question is whether

synchrotron radiation keeps the particle along the field lines.
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Synchrotron radiation.—From the last lecture, proton synchrotron radiation causes an

energy decay at a rate Ė/E ≈ 3 × 105γB2

12
s−1 if the highly relativistic protons move

perpendicular to field lines. If E/Ė is short compared to the time needed to travel across

the acceleration region, the proton will follow field lines. Near a strongly magnetic neutron

star, with B = 1012 G, there’s no chance of highly relativistic protons moving across field

lines. Even for a supermassive black hole, where B ∼ 105 G, a proton with γ = 1011 as

required will be forced to follow the field lines in a time much less than the crossing time of

the region, so in both cases it is likely that protons will be forced to follow field lines.

This is a problem. My best guess is that there are AGN with field geometries such that

the curvature radius is much greater (factor of >100!) than the distance from the hole. That

would just barely allow the observed energies. If future detectors (such as the Pierre Auger

Array) see cosmic rays of energies much greater than the current record holders, this would

be a real problem. We’ll get into other issues with the highest energy cosmic rays near the

end of the course.

Gravitational radiation

As direct detection of gravitational radiation draws nearer, it is useful to consider what

such detections will teach us about the universe. The first such detection, of course, will be

of immediate significance because it will be a direct confirmation of a dramatic prediction of

general relativity: to paraphrase John Wheeler, that spacetime tells sources how to move,

and moving sources tell spacetime how to ripple.

Beyond this first detection, gravitational wave detections will pass into the realm of

astronomy, allowing new observational windows onto some of the most dynamic phenomena

in the universe. These include merging neutron stars and black holes, supernova explosions,

and possibly echoes from the very early history of the universe as a whole. They are also

anticipated to provide the cleanest tests of predictions of general relativity in the realm of

strong gravity.

However, there are important differences from standard astronomy. In electromagnetic

observations, in every waveband there are sources so strong that they can be detected without

knowing anything about the source. You don’t need to understand nuclear fusion in order

to see the Sun! In contrast, as we will see, most of the expected sources of gravitational

radiation are so weak that sophisticated statistical techniques are required to detect them

at all. These techniques involve matching templates of expected waveforms against the

observed data stream. Maximum sensitivity therefore requires a certain understanding of

what the sources look like, hence of the characteristics of those sources. In addition, when

detections occur, it will be important to put them into an astrophysical context so that the
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implications of the discoveries are evident.

Before discussing types of sources, though, we need to have some general perspective on

how gravitational radiation is generated and how strong it is. We will begin by discussing

radiation in a general context.

By definition, a radiation field must be able to carry energy to infinity. If the amplitude

of the field a distance r from the source in the direction (θ, φ) is A(r, θ, φ), the flux through a

spherical surface at r is F (r, θ, φ) ∝ A2(r, θ, φ). If for simplicity we assume that the radiation

is spherically symmetric, A(r, θ, φ) = A(r), this means that the luminosity at a distance r

is L(r) ∝ A2(r)4πr2. Note, though, that when one expands the static field of a source

in moments, the slowest-decreasing moment (the monopole) decreases like A(r) ∝ 1/r2,

implying that L(r) ∝ 1/r2 and hence no energy is carried to infinity. This tells us two

things, regardless of the nature of the radiation (e.g., electromagnetic or gravitational).

First, radiation requires time variation of the source. Second, the amplitude must scale as

1/r far from the source.

We can now explore what types of variation will produce radiation. We’ll start with

electromagnetic radiation, and expand in moments. For a charge density ρe(r), the monopole

moment is
∫

ρe(r)d
3r. This is simply the total charge Q, which cannot vary, hence there

is no electromagnetic monopolar radiation. The next static moment is the dipole moment,
∫

ρe(r)rd
3r. There is no applicable conservation law, so electric dipole radiation is possible.

One can also look at the variation of currents. The lowest order such variation (the “magnetic

dipole”) is
∫

ρe(r)r × v(r)d3r. Once again this can vary, so magnetic dipole radiation is

possible. The lower order moments will typically dominate the field unless their variation is

reduced or eliminated by some special symmetry.

Now consider gravitational radiation. Let the mass-energy density be ρ(r). The monopole

moment is
∫

ρ(r)d3r, which is simply the total mass-energy. This is constant, so there cannot

be monopolar gravitational radiation. The static dipole moment is
∫

ρ(r)rd3r. This, how-

ever, is just the center of mass-energy of the system. In the center of mass frame, therefore,

this moment does not change, so there cannot be electric dipolar radiation in this frame

(or any other, since the existence of radiation is frame-independent). The equivalent of the

magnetic dipolar moment is
∫

ρ(r)r × v(r)d3r. This, however, is simply the total angular

momentum of the system, so its conservation means that there is no magnetic dipolar grav-

itational radiation either. The next static moment is quadrupolar: Iij =
∫

ρ(r)rirjd
3r. This

is not conserved, therefore there can be quadrupolar gravitational radiation.

This allows us to draw general conclusions about the type of motion that can generate

gravitational radiation. A spherically symmetric variation is only monopolar, hence it does
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not produce radiation. No matter how violent an explosion or a collapse (even into a black

hole!), no gravitational radiation is emitted if spherical symmetry is maintained. In addition,

a rotation that preserves axisymmetry (without contraction or expansion) does not generate

gravitational radiation because the quadrupolar and higher moments are unaltered. There-

fore, for example, a neutron star can rotate arbitrarily rapidly without emitting gravitational

radiation as long as it maintains axisymmetry.

This immediately allows us to focus on the most promising types of sources for gravita-

tional wave emission. The general categories are: binaries, continuous wave sources (e.g., ro-

tating stars with nonaxisymmetric lumps), bursts (e.g., asymmetric collapses), and stochas-

tic sources (i.e., individually unresolved sources with random phases; the most interesting of

these would be a background of gravitational waves from the early universe).

We now make some order of magnitude estimates. What is the approximate expression

for the dimensionless amplitude h of a metric perturbation, a distance r from a source? We

argued that the lowest order radiation had to be quadrupolar, and hence depend on the

quadrupole moment I. This moment is Iij =
∫

ρrirjd
3x, so it has dimensions MR2, where

M is some mass and R is a characteristic dimension. We also argued that the amplitude is

proportional to 1/r, so we have

h ∼ MR2/r . (2)

We know that h is dimensionless, so how do we determine what else goes in here? In GR we

usually set G = c = 1, which means that mass, distance, and time all have the same effective

“units”, but we can’t, for example, turn a distance squared into a distance. Our current

expression has effective units of distance squared (or mass squared, or time squared). We

note that time derivatives have to be involved, since a static system can’t emit anything.

Two time derivatives will cancel out the current units, so we now have

h ∼
1

r

∂2(MR2)

∂t2
. (3)

Now what? To get back to physical units we have to restore factors of G and c. It is useful

to remember certain conversions: for example, if M is a mass, GM/c2 has units of distance,

and GM/c3 has units of time. Playing with this for a while gives finally

h ∼
G

c4

1

r

∂2(MR2)

∂t2
. (4)

Since G is small and c is large, the prefactor is tiny! That tells us that unless M and R are

large, the system is changing fast, and r is small, the metric perturbation is minuscule.

Let’s make a very rough estimate for a circular binary. Suppose the total mass is

M = m1 + m2, the reduced mass is µ = m1m2/M , the semimajor axis is a, and the orbital
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frequency Ω is therefore given by Ω2a3 = M . Without worrying about precise factors, we

say that ∂2/∂t2 ∼ Ω2 and MR2 ∼ µa2, so

h ∼ (G/c4)(1/r)(µM/a) . (5)

This can also be written in terms of orbital periods, and with the correct factors put in we

get, for example, for an equal mass system

h ≈ 10−22

(

M

2.8 M¯

)5/3(

0.01 sec

P

)2/3(

100 Mpc

r

)

, (6)

which is scaled to a double neutron star system. This is really, really, small: it corresponds

to less than the radius of an atomic nucleus over a baseline the size of the Earth. That’s

why it is so challenging to detect these systems!

Gravitational Wave Detectors

This is an immense subject; multiple current detectors are in existence (although not yet

at a sensitivity likely to detect astrophysical sources), and many things are currently being

learned. We will therefore only discuss the very basics of laser interferometer detectors.

Since gravitational waves at lowest order are quadrupolar instead of dipolar, the polar-

ization patterns are different from what we are used to for electromagnetic radiation. That

is, you recall that if an EM wave is traveling in the z direction, then all polarizations are

combinations of a linear polarization in the x direction, and a linear polarization in the y

direction (rotation with time gives elliptical polarization in general). Gravitational waves

are also transverse (i.e., there is no component in the propagation direction, here taken along

the z axis), but the fundamental modes are what are known as the + and × modes.

To picture these, consider an initially circular ring of test particles in the x-y plane. As

a + mode gravitational wave passes through along the z axis, the ring first compresses along

the y axis and stretches along the x axis (conserving area to first order), then compresses

along the x axis and stretches along the y axis, then repeats. The × mode is the same thing

but rotated by 45◦.

Detection thus requires sensitivity to changes in separations. However, an absolute

measurement of the distance is hopeless: from above, a fractional change h ∼ 10−22 might

be typical, so for a baseline of 4 km (such as in the LIGO detectors), the actual change in

length is only 4 × 10−17 cm. A proton has a radius of about 10−13 cm! What can be done?

The best answer appears to be to use laser interferometry. Imagine two interferometric

cavities at right angles to each other. Laser light goes down both, hits mirrors, then comes

back to interfere. Very slight changes in the relative distances along the cavities can be
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detected by movement of the interference fringes. The changes in distance can be measured

to much less than a wavelength in the same way that the centroid location of a star can be

measured to much less than the resolution of an instrument, by taking advantage of high

laser power.

However, there are complications. High laser power also means that the shot noise

of the photons causes fluctuations in the mirror. It can also cause thermal distortions of

the mirrors, as well as (potentially) producing a type of parametric resonance in the cavity

because mirror vibrations couple to the radiation pressure and can produce oscillations in

this way. For space-based interferometers such as the planned LISA mission, the mirrors

drift freely, meaning that their mutual distance changes constantly. The net result is that

there are a scary number of issues to deal with, but at this point none of them seem fatal in

the long run, and in fact ground-based instruments such as LIGO have reached their initial

design sensitivity, so things are looking good!


