
Clusters: Context and Background

We’re about to embark on a subject rather different from what we’ve treated before,

so it is useful to step back and think again about what we want to accomplish in this

course. We have been accumulating a set of tools with which we can approach problems in

high-energy astrophysics. For a given situation we should be able to ask some fundamental

questions about the reliability of the answers. For example, if we read a paper about black

holes we should ask “will general relativity be important”? If so, do the authors apply

it correctly? Ask class: what are a couple of questions one might, similarly, ask about

neutron stars? For neutron stars we can also ask about GR, and also ask whether strong

magnetic fields may play a role. This means that if we see a paper about merging neutron

stars that treats gravity in the Newtonian limit, we should be suspicious about the results.

Development of physical insight is improved if we consider a variety of physical regimes.

In this course we’ve thought about extremely high densities and strong magnetic fields,

which are not in the normal run of environments considered even in astrophysics. In the

same spirit of broadening our exposure to different regimes, we will consider in the next

three lectures a very different environment, yet one that also has been illuminated greatly

by high-energy observations. This is the subject of clusters of galaxies. Clusters have

great importance in a variety of contexts, but especially as probes of cosmology and of the

formation of the first structure in the universe. This will therefore bring in many topics

and questions that we have not yet considered. In this lecture we’ll think primarily about

context, in the next lecture we’ll talk about the observational properties and what they

imply, and in the third lecture we’ll talk in detail about the Sunyaev-Zeldovich effect, which

is a growth field that has many cosmological applications.

Quick review of properties

Before heading into the context, here’s a quick summary of some of the properties

of clusters of galaxies. Clusters were first catalogued in a systematic way by Abell in

1958. He identified some 1700 clusters on the Palomar Observatory Sky Survey plates,

by eye, and produced a richness criterion based on the galaxy count within a radius of

1.5 h−1 Mpc, where h = H0/100 km s−1 Mpc−1 ≈ 0.7. Such a volume typically contains

∼ 103 galaxies, has a mass M ∼ 1014−15 M¯, a temperature T ∼ 108 K, and a total

(bolometric) luminosity L ∼ 1043−45 erg s−1. The number density of clusters in the local

universe is about ncl ≈ 10−5h3 Mpc−3. Approximately 10% of galaxies are in clusters, the

rest being “field” galaxies. Although “clusters of galaxies” were first discovered optically, by

the, well, clustering of galaxies, galaxies comprise a small fraction of the total mass; most

of the mass is actually dark matter (i.e., a collisionless component that is not specifically

identified), and most of the rest is in hot gas spread throughout the cluster. It is worth

keeping in the back of your mind that the inference of some of these quantities is not a



straightforward thing, and that, e.g., getting the mass of a cluster can be tricky. In fact,

Ask class: what are ways in which cluster mass could be inferred? Typically one gets the

mass from (1) motions of galaxies within the cluster, assuming they are bound, (2) the

temperature of the gas, and (3) gravitational lensing. The approximate agreement of all of

these is encouraging.

Cosmology

As we said earlier, clusters have many cosmological implications. To understand them

better, we’ll skim the surface of a few important aspects of cosmology.

The first, and most important thing, is that the universe is expanding. As you may

remember, it was this prediction of general relativity that caused Einstein to balk and

introduce the cosmological constant. The line element for the expanding universe can be

written in many ways, one of which is

ds2 = −dt2 +
dr2

1 + kr2/R2
+ r2(dθ2 + sin2 θ dφ2) . (1)

Here k = 0,±1 and the angular part indicates that this is a universe with spherical

symmetry. In this expression R is the radius of the universe, and is time-dependent. k = 0

indicates a spatially “flat” universe, which will barely expand forever, k = −1 indicates a

“closed” universe that will eventually recollapse, and k = 1 indicates an “open” universe,

which will expand forever. Incidentally, the time-dependence of R means that there is no

global energy conservation in an expanding universe. One of the fundamentally useful

quantities in cosmology is the redshift, which is defined as 1 + z equaling the ratio of the

measured wavelength to the wavelength in the emitter’s rest frame.

Much about the evolution and fate of the universe can be encompassed in just a few

numbers. These are usually described in terms of their present-day contributions. It is, for

example, of interest to know if the universe will expand forever or ultimately recollapse.

For this, one can define three related parameters. One is the total mass density relative to

a critical density, Ωm = ρ/ρcrit. If there is nothing else in the universe but ordinary matter,

Ωm < 1 means an open universe, Ωm > 1 means a closed universe, and Ωm = 1 means a

flat universe. More generally, one can define a curvature parameter ΩR, such that ΩR > 0

means an open universe, ΩR < 0 means a closed universe, and ΩR = 0 means a flat universe.

Finally, one can define a similar contribution from the cosmological constant, ΩΛ. Ignoring

contributions from things like photons and neutrinos, Ωm + ΩΛ + ΩR = 1. At high redshift,

regardless of what Ωm, ΩΛ, and ΩR are now, the universe acts as if Ωm = 1 and the other

two vanish. This is important to remember, as it simplifies things dramatically at redshifts

z >∼ 10.

Another important constant is the Hubble constant, which measures the current rate of



expansion of the universe. This, by the way, is a misnomer, because the Hubble constant

isn’t constant with redshift.

The effects of the expansion of the universe are many. One of them is that whereas

at low redshifts distance can be measured in many independent ways that all agree with

each other (e.g., luminosity distance, angular diameter distance, proper distance, and so

on), at high redshifts they diverge from each other and you have to be very careful about

which one you’re using at a given time. For example, when people have reported recently

the evidence for a cosmological constant from supernova observations, they’re using a

luminosity distance. This is defined as the distance one would have to go in Euclidean space

in order to make an object appear as faint as it does at the given redshift. Even though the

proper distance (i.e., measured with a ruler from you to the object of interest) approaches

a constant value as z → ∞, the luminosity distance does not, because due to redshifts the

flux drops as (1 + z)−2 (one factor from the lowered energy of the photons, one from the

lowered rate of reception of photons). The effect on flux can be expressed with the distance

modulus. For an Einstein-de Sitter universe, in which Ωm = 1 and ΩΛ = ΩR = 0 currently

(and for all time), the distance modulus is

m − M = 25 + 5 log10

[

6000(1 + z)(1 − (1 + z)−1/2)
]

− 5 log10 h . (2)

Here the log is to base 10. Recall that the absolute magnitude M is as measured at a

distance of 10 pc, and that 5 magnitudes is a factor of 100. Using this, one can figure out

the distance if the true luminosity is known. When ΩΛ 6= 0 the expression is changed,

and it is the apparent deviation from the Ωm = 1 form that is the evidence for a nonzero

cosmological constant. The current best guess is that presently Ωm = 0.3, ΩΛ = 0.7, and

ΩR = 0. Remember, though, that although the cosmological constant may dominate now,

at higher redshift the matter contribution is most important. In fact, with increasing z the

matter part scales like Ωm(1 + z)3, whereas the cosmological constant term is just ΩΛ (both

need to be normalized so that Ωm + ΩΛ + ΩR = 1, and if ΩR = 0 now it was always so and

will always be so).

Our final bit about general cosmology is dark matter. One of the grand successes of the

Big Bang model is that it predicts the abundances of light elements. Hydrogen, deuterium,

helium 3 and 4, and lithium 7 were produced in the first few minutes, and their relative

primordial abundances are all related to just one parameter: the fractional contribution

of baryons relative to the critical density. Measurements of primordial abundances are

tough, but the best current estimate is that Ωb = 0.019 h−2 (with a physical density of

3.6 × 10−31 g cm−3). Since the overall matter budget is Ωm = 0.3, this means that 80-90%

of matter must be something other than baryons. Other evidence suggests that this matter

must be effectively non-self-interacting and non-luminous, and is therefore called “dark

matter”. One must, however, be careful, because the evidence for all this, though highly

suggestive, is far from a done deal.



Structure formation

But what does all this have to do with clusters, you may ask? Patience, we’re getting

there! Clusters are among the largest gravitationally bound systems in the universe, so

we’d like to know how they formed. This brings up the more general issue of structure

formation: evidence is that early in the universe, the universe was astonishingly uniform.

Now, of course, it isn’t (we are more than 30 orders of magnitude denser than the average

density of the universe). How did this happen?

Let’s think first about gravitational collapse in a region where there’s no funny business

about an expanding universe. Suppose we also ignore pressure, so nothing can stop the

collapse. Then a slight overdensity will lead to collapse. Ask class: what, approximately,

will be the time scale of the collapse? It will be comparable to a free fall time scale. Since

the free fall timescale goes like
√

r3/GM , as the region collapses (i.e., r decreases) the time

scale decreases, and there is a rapid and exponential collapse.

But what happens in an expanding universe? Ask class: qualitatively, what are the

differences? Then, if the overdensity is slight, so that δρ/ρ ¿ 1, the matter tries to collapse

but the universe expands from under it. The result is that the fractional overdensity

increases, but as long as δρ/ρ ¿ 1, the locally measured size of the region actually increases.

This is a very different situation from collapse on a static background. It is useful in this

and many other contexts to introduce a scale factor for the size of the universe, a(t), which

could be normalized at unity in the present day. Note that a ∝ (1 + z)−1. Then, for linear

collapse (δρ/ρ ¿ 1), δ ∝ a. That is, the fractional overdensity of a linear region increases

proportionally to the size of the universe. This is much slower collapse, meaning that the

initial size of perturbations at z ≈ 1000, where radiation decoupled from matter, had to be

of the order of 10−5 on angular scales of a few degrees, otherwise gravitational instability

would not have had time to form structure at z of a few.

The cosmic microwave background, which comes from z ≈ 1000, is a wonderful record

of when all perturbations in the universe were linear. This is a great record of the early

days, and is very simple to treat compared to the current nonlinear universe. Note that, as

in the case of black holes, “simple” does not mean “mathematically trivial”. It just means

that there are a limited number of variables one must consider, so it is possible to do a

more mathematically rigorous and (in principle) trustworthy set of analyses than in the

current universe, where things are really complex. The information contained in the CMB

is potentially a goldmine, which is why there is so much current effort directed towards

measuring it. Generally, an important thing to remember is that (with lots of details!) the

initial fractional amplitude of perturbations at small length scales tends to be greater than

at large length scales. Therefore, all else being equal, small things form before big things in

this picture.



At some point, structures will become nonlinear (δρ/ρ >∼ 1). Their further development

depends on a number of factors. Ignoring everything else, when a mass concentration

becomes nonlinear, the further collapse proceeds more quickly than before because the

universal expansion is of diminishing importance compared to the contraction, so when a

perturbation becomes strongly nonlinear the collapse is almost the same as it would have

been on a static background. Therefore dark matter, if it is cold and pressureless, will

continue contracting for a while. The baryons, however, may or may not. Ask class: what

could stop the contraction for baryons? Their self-pressure may be able to stall contraction.

This happens if the mass of the region is less than the Jeans mass, which is the mass at

which a sound wave can cross the region faster than the free-fall time (i.e., compression

by gravitational contraction creates an acoustic compression wave, which tries to expand).

Numerically, in a region with temperature T and number density n, the Jeans mass is

MJ ≈ 5 × 107(T/104 K)3/2(n/1 cm−3)−1/2M¯ . (3)

In the early universe, from z ∼ 1000 to z ∼ 50 − 100, the baryons have a temperature

tightly coupled to the temperature of the cosmic microwave background, Tr = 2.7(1 + z) K,

and the Jeans mass is constant at a few times 105 M¯. At lower redshifts, the matter

temperature drops lower than Tr and the Jeans mass decreases to a few times 104 K. The

first structures may therefore have masses comparable to this mass. Later, larger structures

form. The first structures are thought to form at redshifts ∼ 30, but larger, galactic-mass,

structures need to wait until z ∼ 10. Clusters, with masses ∼ 1014−15 M¯, form significantly

later yet, and their formation and history relates to the values of Ωm and ΩΛ, because unlike

the formation of smaller objects, clusters form at a time when the cosmological constant

can be dynamically important.

The last point about structure formation is that even dark matter does not collapse

to a point. Ask class: even if the dark matter does not interact with itself in any way

but gravitationally, what might stop the collapse? It will have some relative motion or

rotation, so it collapses until it virializes, that is, until orbital velocities are comparable to

radial velocities. This probably happens when the overdensity δρ/ρ ∼ 200. When this does

happen, it appears likely that the first highly nonlinear structures to form are not spheres,

but are instead flattened: Zeldovich “pancakes”. It is thought that these pancakes then

collapse along another axis to form spindles, and finally along that axis to eventually reach

equilibrium as approximate spheres. This, however, is an issue of current numerics.


