
Tensor manipulations

One final thing to learn about tensor manipulation is that the metric tensor is what

allows you to raise and lower indices. That is, for example, vα = gαβvβ, where again we use

the summation convention. Similarly, vα = gαβvβ, where gαβ is the matrix inverse of gαβ:

gαβgβγ = δα
γ , where δ is the Kronecker delta (1 if α = γ, 0 otherwise).

Another special tensor is the Levi-Civita tensor ǫαβγδ. This tensor is defined as being

completely antisymmetric. In flat spacetime, ǫ0123 = 1 if 0 is the positive time direction and

(123) is a right-handed set of spacetime basis vectors (e.g., xyz). Then ǫαβγδ = 1 if (αβγδ)

an even permutation of 0123, -1 if it is an odd permutation, and 0 if any two indices are the

same. In curved spacetime, we define the metric determinant g = det||gαβ|| < 0. Then, the

Levi-Civita tensor is ǫαβγδ = (−g)1/2[αβγδ] where [αβγδ] is +1 for an even permutation,

-1 for an odd permutation, and zero if two indices are equal, as before. Note that the

Levi-Civita tensor may be familiar from cross products: A × B = ǫijkA
iBj.

Proper time and four-velocity

As we move into discussion of particular spacetimes, we need to introduce two important

concepts. The first is proper time. Consider a particle with nonzero rest mass, and suppose

that we measure the invariant interval between to events on the world line of that particle.

In general, for any coordinate system and observer we have ds2 = gαβdxαdxβ. Remember

that α and β run over all four spacetime indices, so that even though “x” reminds us of

spatial coordinates, one of the indices indicates time. How is this perceived by an observer

who is riding along with the particle? In that coordinate system, the particle is always at

the spatial origin, meaning that all the spatial components of dxα are zero. As a result,

only the observer’s time changes. We label this time as τ and call it the proper time. In

this local frame the coordinate system is Minkowski, hence the metric coefficient is just −1

(−c2 in physical units), therefore ds2 = −dτ 2. Note that because of our choice of metric

signature ds2 < 0 for a particle of nonzero rest mass, hence dτ 2 > 0 as it should be.

Our second concept is the four-velocity uα: uα = dxα/dτ . Note, therefore, that one of

the components of the four-velocity is ut = dt/dτ . This is the rate at which the coordinate

time t passes relative to the proper time τ .

What about for a photon? This is trickier, since ds2 = dτ 2 = 0 for a photon. We

therefore need another way to describe the motion of a photon. The way to do this is

to simply define some parameter, call it λ, which checks off the location on a given path

of motion (this is called an affine parameter, and must be chosen such that dxα/dλ has

constant magnitude along the path). We then look at the motion with respect to that

parameter, meaning that uα = dxα/dλ. We will explore some consequences of this later.

Spacetime and metrics



Now let’s get a little more concrete, which will eventually allow us to introduce additional

concepts. Let’s concentrate on one particularly important geometry, the Schwarzschild

geometry (aka spacetime). It is very useful, not least because it is more general than you

might think. It is the geometry outside of (i.e., in a vacuum) any spherically symmetric

gravitating body. It is not restricted to static objects; for example, it is the right geometry

outside a supernova, if that supernova is kind enough to be spherically symmetric. To

understand some of its aspects we’ll write down the line element (i.e., the metric in a

particular set of coordinates). However, the coordinates themselves are tricky, so let’s start

with flat space.

Ask class: what is the Minkowski spacetime in spherical coordinates?

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) . (1)

Ask class: what is the meaning of each of the coordinates (this is not a trick question!)?

Everything is as you expect: θ and φ are the usual spherical coordinates, r is radius, t is

time. In particular, if you have two things at r1 and r2 (same t, θ, and φ) then the distance

between them is |r2 − r1|. No sweat. You could also say that the area of a sphere at radius

r is 4πr2.

Well, why all this rigamarole? It’s because in Schwarzschild spacetime things get

trickier. Now let’s reexamine the Schwarzschild line element

ds2 = −(1 − 2M/r)dt2 + dr2/(1 − 2M/r) + r2(dθ2 + sin2 θdφ2) . (2)

Ask class: are the meanings of θ and φ changed? No, they’re the same as always. This

is guaranteed by the assumption of spherical symmetry that comes into the Schwarzschild

derivation. But what about r? Ask class: suppose dt = dθ = dφ = 0. What is the proper

distance between r1 and r2? In this case, ds = g1/2

rr dr, so the distance is

D =
∫ r2

r1

g1/2

rr dr =
∫ r2

r1

(1 − 2M/r)−1/2dr . (3)

That means that if r1 = 2M , for example, the radial distance measured is rather different

than in flat space! But if you calculate the area of a sphere of radius r, you get 4πr2 as

usual, and the circumference of a circle is 2πr as usual. This is one of the most extreme

geometric indicators of the curved spacetime: “π”=circumference/diameter drops like a

rock!

What about time? Ask class: what is the relation between proper time dτ at r and the

coordinate time dt if dr = dθ = dφ = 0? dτ 2 = −ds2 = −gttdt2 ⇒ dτ = (1 − 2M/r)1/2dt.

Therefore, as r → 2M , the elapsed proper time is tiny compared to the elapsed coordinate

time. It turns out that t, the coordinate time, is the time as seen at infinity. Therefore,

to a distant observer it looks like an object falling into the horizon takes an infinite time

to do so. This is the origin of the term “frozen star” used by many until the 1970’s for



black holes. You might think, then, that if you were to look at a black hole you’d see lots

of frozen surprised aliens just outside the horizon. You actually would not, but more on

that later. Another thing to think about is that when r < 2M , bizarre stuff happens, for

example the signs of gtt and grr switch. What does this signify? It could be just that the

coordinate system is not useful there, the same way that at the north or south pole of a

sphere the azimuthal coordinate φ changes arbitrarily rapidly for a finite linear motion. Or

it could be that something truly horrible occurs at r = 2M , e.g., that any observer crossing

inside is vaporized in a cloud of coordinates. The truth, as it happens, lies in between those

extremes.

Conserved Quantities in Schwarzschild Spacetime

Let’s take another look at the Schwarzschild spacetime. It is spherically symmetric.

It is also stationary, meaning that nothing about the spacetime is time-dependent (for

example, the time t does not appear explicitly in the line element). Now, in general in

physics, any time you have a symmetry you have a conserved quantity. Ask class: for a

particle or photon moving under just the influence of gravity, what are some quantities that

will be conserved in the motion of that particle? As with any time-independent central

force, energy and angular momentum will be conserved. These follow from, respectively, the

symmetry with time and the symmetry with angle. In addition, the rest mass is conserved

(more on that later). We have three conserved quantities, and four components to the

motion, so if we knew one more we’d be set. Luckily, having spherical symmetry means that

we can define a plane of motion for a single particle, so we only have three components to

the motion (in particular, we might as well define the plane of motion to be the equatorial

plane, so that θ = π/2 and we don’t have to worry about motion in the θ direction). That

means we get a great boost in following (and checking) geodesic motion in the Schwarzschild

spacetime from the conserved quantities.

Test particle.—Here we pause briefly to define the concept of a test particle. This is

useful in thinking about the effect of spacetime on the motion of objects. A test particle is

something that reacts to fields or spacetime or whatever, but does not affect them in turn.

In practice this is an excellent approximation in GR whenever the objects of interest have

much less mass than the mass of the system; this applies, for example, to gas in accretion

disks.

We can now think some more about four-velocity. This is a good time to show a useful

technique, which is the computation of quantities in a reference frame where they are

particularly simple.

We’ll start with the four-momentum pα. From special relativity, you know that the

time component is E, and the space component is the ordinary 3-momentum, call it P.

Let’s consider the square of this four-momentum, pαpα = gαβpαpβ. Assume we have gone



into a local Lorentz frame, so that gαβ = ηαβ. Then p2 = pαpα = −E2 + P 2. Of course,

we can boost into another Lorentz frame in which the particle is not moving (assuming it’s

not a photon). Ask class: what’s the square of the four-momentum then? In that frame,

P = 0, so the square is just −E2. But then the total energy is just the rest mass energy, so

pαpα = −m2c4. Now, the last step. Ask class: what kind of geometric object is pαpα? Is it

a scalar, vector, tensor, what? No free indicies, so this is a scalar and its value is the same

in any Lorentz frame. Therefore, in general p2 = −m2, so we end up with −m2 = −E2 +P 2,

or E2 = m2 + p2. With units, it’s just the famous equation E2 = m2c4 + p2c2.

If you divide the four-momentum by the mass m you get the four-velocity u, at least for

particles with nonzero rest mass. This means that for massive particles, u2 = uαuα = −1.

This leads to a cool proof. Ask class: what is the derivative of uαuα? Since it’s the

derivative of -1, a constant, the derivative is zero! But if you write it out, the derivative is

also twice the dot product of the four-velocity with the four-acceleration. Therefore, the

four-acceleration is always orthogonal to the four-velocity (this is true in general, not just

for motion under gravity).

What about a photon? There, the four-momentum is again p2 = −E2 +P 2, but since for

a photon E = Pc, we always have p2 = 0. Similarly, for a photon the squared four-velocity

is u2 = uαuα = (dxα/dλ)(dxα/dλ) = gαβ(dxα/dλ)(dxβ/dλ) = (gαβdxαdxβ)/(dλ)2. But the

numerator is just the interval traveled by the photon. Ask class: what is that interval? It’s

zero, so (consistent with the squared four-momentum being zero) we find that the squared

four-velocity of a photon is zero.

This, therefore, is true for any spacetime at all, and even in the presence of other

arbitrary forces. For a particle with mass, the squared four-velocity is u2 = −1, and for a

photon or other massless particle u2 = 0.

Let’s see an example of how this can help us. In general, for a massive particle,

ut = dt/dτ , ur = dr/dτ , uθ = dθ/dτ , and uφ = dφ/dτ . In Schwarzschild coordinates it

is also true that ut = −e, where e is the specific energy (energy per mass) of the particle

(e = 1 for a particle at rest at infinity) and uφ is the specific angular momentum of the

particle. Suppose we have a particle in circular motion, although not necessarily Keplerian.

Then there is no r or θ motion and u2 = −1 gives us utut + uφuφ = −1. We can put this

into a more convenient form by writing (gtαuα)ut + (gφαuα)uφ = −1. The Schwarzschild

spacetime is diagonal, so this becomes simply gtt(ut)
2 + gφφ(uφ)

2 = −1. Consulting the line

element, we find gtt = −1/(1 − 2M/r) and gφφ = 1/r2, so the specific energy is

e =
√

(1 − 2M/r)(1 + u2

φ/r
2) . (4)

For example, for a slowly rotating star with uφ ≈ 0, the energy is e =
√

1 − 2M/r. This

means that a particle of mass m originally at infinity will release a total energy m(1− e) if it

finally comes to rest on the star’s surface. Let’s check if this makes sense in the Newtonian



limit r ≫ M . Then e ≈ 1 − M/r, so the energy released is mM/r, which is the Newtonian

form.

Additional references: As usual, go to Misner, Thorne, and Wheeler, Gravitation, for

more details.


