ASTR 680 Practice questions for lecture 9: Black Holes part 1

1. In Schwarzschild coordinates, r is the circumferential radius; that is, if $d t=d r=d \theta=0$, the distance from $\phi=0$ to $\phi=2 \pi$, divided by 2π, equals r. What about in the Kerr spacetime described using Boyer-Lindquist coordinates?
2. Compute the frame-dragging frequency ω (equation (4) in the notes) for the Earth, at the surface of the Earth.
3. Compute the fractional difference made by the $\pm a M^{1 / 2}$ term in the denominator of equation (5), for a binary neutron star of your choice.
