ASTR 680 Practice questions for lecture 14: Observational signatures of strong gravity

1. In the notes we mention that it is difficult to grow a $10^{9} M_{\odot}$ black hole by $z=7.1$. Let's say that you start with a $10 M_{\odot}$ black hole, and accrete with an efficiency $\eta \equiv L / \dot{M} c^{2}=0.1$ at the Eddington luminosity for 600 million years (roughly the time from the formation of the first stars to $z=7.1$). How high a mass do you reach? What are some ways to get around these restrictions?
2. Suppose that gravitons have rest mass-energies of $10^{-20} \mathrm{eV}$. Assuming that a graviton with a frequency ν has a total energy $h \nu$ (and that special relativity applies as normal), compute the arrival time difference between two gravitons at Earth assuming that one has a frequency $\nu=50 \mathrm{~Hz}$ and the other has a frequency $\nu=200 \mathrm{~Hz}$, and that they were produced at the same time, a billion light years from us. Compare that time difference with the ~ 0.2 second duration of GW150914.
