## Coding in advance of the Feb 12, 2018 class

For next time, I would like you to write codes to compute the chi squared, and the Poisson log likelihood, for one-dimensional data.

To do this, suppose that we have n data bins, the *i*th of which has  $d_i$  observed data counts, and that in a particular model we would expect  $m_i$  counts in bin *i*. Then we compute  $\chi^2$  using

$$\chi^2 = \sum_{i=1}^n \frac{(m_i - d_i)^2}{d_i} \,. \tag{1}$$

This formula assumes that the statistics are Gaussian, and that the standard deviation is  $\sqrt{d_i}$ . Note that Pearson's chi squared (which is what is often meant by "chi squared") actually assumes that the standard deviation is  $\sqrt{m_i}$ , but in astronomical applications it is common (but not correct!) to associate uncertainties with the data as we do above. So that's what we'll calculate.

The Poisson *likelihood* (not yet the log likelihood) is given by

$$\mathcal{L} = \prod_{i=1}^{n} \frac{m_i^{d_i}}{d_i!} e^{-m_i} .$$
(2)

As we'll learn when we discuss Bayesian statistics, unlike  $\chi^2$ , the value  $\mathcal{L}$  has no independent meaning; it is the *ratio* of  $\mathcal{L}$  for one parameter combination to that of another that has meaning. Because  $\prod_{i=1}^{n} (1/d_i!)$  is the same for any parameter combination, it therefore cancels in such ratios, and we can thus write

$$\mathcal{L} \propto \prod_{i=1}^{n} m_i^{d_i} e^{-m_i} .$$
(3)

This number can be either gigantic or tiny, and thus it is more convenient to work with its log, and to use differences in log likelihoods:

$$\ln \mathcal{L} = C + \sum_{i=1}^{n} [d_i \ln(m_i) - m_i] , \qquad (4)$$

where C is a constant that never enters the calculations; thus we can set C = 0.

Please write codes to compute  $\chi^2$  and  $\ln \mathcal{L}$  for any data set  $d_i$  and model expectations  $m_i$ ; we will use these codes, and incorporate them into more involved codes, throughout the course. In particular, it will be important for you to use your  $\chi^2$  and  $\ln \mathcal{L}$  codes in other codes, so please write them as easily-incorporated subroutines (where the inputs are the data vector  $d_i$  and the model vector  $m_i$ ).

In particular, use the data sets on the website (data3\_1.txt, data3\_2.txt, data3\_3.txt, and data3\_4.txt) to estimate a single parameter for rolls of a die. Our model is that the

probability of getting a 1 is 1-p, and the probability for getting a 2, 3, 4, 5, or 6 is p/5. Let our prior probability density be uniform in p, from p = 0 to p = 1. Based on each data set, what is the posterior probability density for p if we use the Poisson likelihood? How about if we use Wilks' Theorem, where we look for  $\Delta \ln \mathcal{L} = -0.5$  from the maximum for the 68.3% credible region? How about if we use  $\chi^2$ , where we would use  $\Delta \chi^2 = 1$  from the minimum for the 68.3% credible region? Note that the  $\chi^2$  calculation can in this case be performed analytically, but I recommend that you save time and do it numerically. What conclusions do you draw?