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Is it Gaussian?

Many statistical approaches, including the ubiquitous χ2, assume that the relevant prob-

ability distribution is Gaussian. In this class we’ll talk about what that means, and the

circumstances in which it is or is not appropriate to use.

Before talking about Gaussians per se, let’s discuss some fundamental aspects of proba-

bility distributions. To do that, when we need something specific we’ll use the following data

set, which I obtained by virtually rolling dice and then sorting the numbers in increasing

order:

1,1,2,3,3,4,5,6,6,6.

A properly normalized probability distribution P (x), where x indicates the parameters

(written here as a vector, i.e., there could be multiple parameters), has the property that∫
P (x)dx = 1 , (1)

where the integral is over all possible values of x. For any parameters that can only take on

a set of discrete values, the integral is replaced by a sum.

For our specific case, let x represent the number on the die, so that the full set of

possibilities is x = 1, 2, 3, 4, 5, 6. We know that for a fair die, P (x = 1) = 1/6, P (x = 2) =

1/6, . . . , P (x = 6) = 1/6. But our particular data don’t have that distribution. Instead, for

this data set, P (x = 1) = 2/10, P (x = 2) = 1/10, P (x = 3) = 2/10, P (x = 4) = 1/10,

P (x = 5) = 1/10, and P (x = 6) = 3/10.

Clearly we retain all of the information if we just list the data points. But often we want

a quick look at the data, and for that purpose we might want to characterize it in different

ways. Here are some of those ways, and please keep in mind that many of these only apply

to a one-dimensional probability distribution:

The “average”.—Often we’d like a single best value to describe a distribution. The

average is a good choice... except that there are many different types of average! Here are

some examples:

1. The median. This is the value such that half the values are below the median, and half

the values are above. In our specific example, the median is 3.5 because half of the ten

values are below this, and half of the ten values are above this. If we have a continuous

distribution P (x), then the median value xmedian is the solution to∫ xmedian

xmin

P (x)dx = 0.5 . (2)

Here xmin is the minimum possible value of x. The median is a good measure of

the average if you want to avoid being biased by outliers. For example, suppose you
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compute the arithmetic mean (see below) of the personal wealth of the people in your

small town, and the answer is $100 million. What a rich community! But maybe Bill

Gates lives in your small town, and in reality most people are dirt poor. The median

would give a better idea of how the typical person is doing.

2. The mode. This is the single most common value in your data. In our case, 6 appears

3 times, which is more than any other number, so it is the mode. For a continuous

distribution, it’s the peak of that distribution, so xmode is such that the largest value

of P (x) is at P (xmode).

3. The mean. Here we usually talk about the arithmetic mean, but there are other vari-

ants. Examples:

(a) The arithmetic mean. For a set of discrete values, you just add them up and divide

by the total number of values: in our case the sum is 1+1+2+3+3+4+5+6+6+6=37,

and there are 10 values, so the arithmetic mean is 37/10=3.7. For a continuous

distribution, the arithmetic mean is 〈x〉 =
∫ xmax

xmin
xP (x)dx. Note again that this

requires that P (x) is normalized so that
∫ xmax

xmin
P (x)dx = 1. This is also our first

example of a moment of the probability distribution P (x); it is the first moment,

because the thing multiplying P (x) in the integral is x1.

(b) The geometric mean. This is the nth root of the product of the n measurements.

In our case, the geometric mean is (1 ∗ 1 ∗ 2 ∗ 3 ∗ 3 ∗ 4 ∗ 5 ∗ 6 ∗ 6 ∗ 6)1/10 = 3.08.

This type of mean isn’t used a lot in probability and statistics, but it does enter

in some physical processes (e.g., some problems in radiative transfer).

(c) The harmonic mean. This is the reciprocal of the arithmetic mean of the reciprocals

of the n measurements. In our case, the harmonic mean is 10/(1/1 + 1/1 + 1/2 +

1/3 + 1/3 + 1/4 + 1/5 + 1/6 + 1/6 + 1/6) = 2.43. Again, this doesn’t enter much

in statistics, but it does tend to put greater weight on smaller values, which can

be useful in other types of radiative transfer (e.g., it is related to the Rosseland

mean opacity).

That’s all very well, but even if you have carefully selected one of these measures, you

have limited information. For example, the following distributions have the same median,

mode, and arithmetic mean: (1) ten 3’s, (2) three 1’s, four 3’s, and three 5’s, (3) one 1, two

2’s, four 3’s, two 4’s, and one 5. They are clearly different, however, so it would be good to

have a way to distinguish them.

The variance.—This is a measure of the spread of the numbers. To get to the definition,

we can define the second moment of the distribution, which for a continuous probability

function is

〈x2〉 =

∫
x2P (x)dx . (3)
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To reiterate, this formula is only valid if P (x) has been normalized such that
∫
P (x)dx = 1.

This is therefore the average of x2 over the probability distribution (and as always if we have

a discrete probability distribution, we sum rather than integrating). For our sample data

set, 〈x2〉 = (1/10)(12 + 12 + 22 + 32 + 32 + 42 + 52 + 62 + 62 + 62) = 17.3. But note that this

really isn’t what we want. You could imagine, for example, some tight distribution with a

large arithmetic mean (say, 100), such that 〈x2〉 is large; that wouldn’t tell us what we want

to know, which is how much the data are spread. What we’d really like to know, therefore,

is the average of the square of the deviation from the mean:

〈(x− 〈x〉)2〉 =
∫

(x− 〈x〉)2P (x)dx

=
∫
x2P (x)dx− 2

∫
x〈x〉P (x)dx+

∫
〈x〉2P (x)dx

= 〈x2〉 − 2〈x〉
∫
xP (x)dx+ 〈x〉2

∫
P (x)dx

= 〈x2〉 − 2〈x〉2 + 〈x〉2
= 〈x2〉 − 〈x〉2

(4)

This is the variance of the distribution, and its square root is the standard deviation (note

that the variance can never be negative, so a square root is okay!); often the standard

deviation is represented by σ, and often the arithmetic mean is represented by µ. Note

that the standard deviation has the same units as the mean. For our specific case, σ2 =

17.3− (3.7)2 = 3.61, and therefore the standard deviation is a pleasingly exact σ = 1.9.

So now we have two measures of the distribution. Of course, these don’t capture every

aspect of the distribution. For example, there are many distributions that have the same

mean and standard deviation but are asymmetric in different ways. To deal with this there

is a quantity called the skewness, which can be written using our previous notation as

γ1 =
(
〈x3〉 − 3µσ2 − µ3

)
/σ3 . (5)

We could then go to the fourth moment and define something called the kurtosis, which can

be thought of as a measure of how peaked the distribution is, and so on. However, we need

to keep in mind that (1) the original full distribution contains all of the information, so (2) if

we are using mean, standard deviation, and so on to characterize the distribution, then we

are being concise in a way that could throw away some information.

The Gaussian distribution

Now, finally, we’re ready to think about Gaussian distributions. For a Gaussian dis-

tribution with arithmetic mean µ and standard deviation σ, the normalized probability

distribution is

P (x|µ, σ) =
1√

2πσ2
e−(x−µ)

2/2σ2

, (6)

assuming that x can range from −∞ to +∞.

The way we have written P should be read as “the probability density P (x) given µ and

σ”. Please note that “probability density” means that the probability of x being between,
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say x0 and x0 + dx (with dx being an infinitesimal) is P (x0)dx. To integrate to 1, therefore,

it must be that P (x) has units of 1/x, given that dx has the same units as x. That’s why

part of the prefactor is 1/σ (recall that σ has the same units as x).

This distribution has a lot of wonderful properties: it is symmetric, its arithmetic mean,

median, and mode are always the same as each other, all moments are well defined and

finite, and there are straightforward analytic expressions for all of those moments. People

will often quote significances in units of σ; a 5σ result, for example. In doing so, they are

using shorthand for “the probability that a draw from a Gaussian is at +5σ or more beyond

the mean” (or something similar). But why should we use it?

In fact, the Gaussian distribution crops up so often in limiting cases that it is commonly

called the “normal” distribution. That, in fact, is why so many statistical tests assume

Gaussian distributions.

But how can that be? There are plenty of distributions that are definitely not Gaussian.

Our die-rolling experiment provides an example. If the die is fair, then after many rolls

we expect the relative probabilities of 1 through 6 all to equal 1/6. Nothing peaked about

that. Other very common and useful probability distributions are also not Gaussian. As

an example of another distribution, if (a) the probability of a count in one time interval is

independent of the probability of a count in the next time interval, and (b) if the probability

of a count in a very short time interval is proportional to the duration of that interval, then

if we expect m counts in some time, the probability of actually seeing d counts is given by

the Poisson distribution:

P (d) =
md

d!
e−m . (7)

As yet another example, suppose that you have a source which is intrinsically steady. That

is, in a given amount of time T you would always expect m counts. However, in a given

measurement time T you actually see d counts, determined by the Poisson distribution above

(this type of statistical variation is called Poisson variation). If you now compute the power

spectrum of a data set consisting of many such measurements, then if you normalize your

power spectrum such that the average is P0, the probability of getting a power between P

and P+dP is 1
P0
e−P/P0dP . There are plenty of other examples of useful, common, probability

distributions that arise in astronomical data sets that are not Gaussian.

Thus it sounds as if, despite the aesthetic beauty and analytic convenience of Gaussians,

we’re out of luck. But the Gaussian-favoring statistician has an ace up her sleeve: the central

limit theorem.

In one standard form of this theorem, we suppose that we have a probability distribu-

tion P (x). P (x) can be anything as long as its variance is not infinite. Thus P (x) could be

weirdly asymmetric, multimodal, spiky, or whatever. We imagine that we select x with prob-
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ability P (x) (said another way, we draw x from the distribution P (x)), and do this n times,

independently. Then we take the arithmetic mean of the n values of x that we obtained.

The central limit theorem says that in the limit n→∞, the probability distribution of the

arithmetic mean approaches a normal distribution with the same average µ as the original

distribution, and with a standard deviation σ/
√
n, where σ is the standard deviation of the

original distribution.

I am sorry to say that I do not know of a simple, short proof of the central limit theorem.

However, for completeness I give at the end a straightforward but lengthy proof.

To test this out, please now read the notes on the coding assignment for this class, and

perform the analyses described there. What do you notice from the plots? How do the

arithmetic mean and standard deviation of your distributions compare with what you would

expect from the central limit theorem?

This is the reason that Gaussian distributions play such a prominent role in statistics.

For small numbers of counts, we don’t necessarily expect a Gaussian. For example, if the

average number of counts in a bin is 1, and if the Poisson distribution is the right distribution,

then the actual distribution of the number of counts doesn’t look very Gaussian (feel free to

plot this if you like). But as your average number of counts goes up, the distribution looks

more and more Gaussian. Given that many analysis packages assume that the distribution is

Gaussian (e.g., anything that has χ2 assumes this), some analysis packages will automatically

group bins of data so that there are enough counts that Gaussians are decent approximations.

Enough people are used to this type of analysis that they think it is necessary to do such

grouping. But it isn’t. There is a more rigorous way, which we’ll discuss in the next three

classes.

Proof of the central limit theorem

The theorem was apparently first proven by Laplace in 1810, but here we reproduce very

closely a proof given at the Wolfram MathWorld site

http://mathworld.wolfram.com/CentralLimitTheorem.html.

Let p(x) be a probability distribution in x with mean µ and a finite standard deviation

σ. Let X be a random variable defined as the average of N samples of x from p(x):

X ≡ 1

N

N∑
i=1

xi . (8)

Then the central limit theorem says that as N →∞, the probability distribution of X, P (X),

tends to a Gaussian with mean µ and standard deviation σ/
√
N . Note the capital letters

here, which distinguish P (X) (the probability distribution of X) from p(x) (the probability

distribution of x).
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Consider the Fourier transform of P (X), with respect to a frequency f (some references

call this an inverse Fourier transform):

PX(f) =

∫ ∞
−∞

e2πifXP (X)dX . (9)

When we Taylor-expand the exponential, this becomes

PX(f) =

∫ ∞
−∞

∞∑
n=0

(2πifX)n

n!
P (X)dX . (10)

Because the integral is over X, we can take the parts not involving X out of the integral:

PX(f) =
∞∑
n=0

(2πif)n

n!

∫ ∞
−∞

XnP (X)dX . (11)

But for a normalized probability distribution P (X), so that
∫∞
−∞ P (X)dX = 1, the integral

in the above equation is just the expectation value of Xn, or 〈Xn〉, so we find

PX(f) =
∞∑
n=0

(2πif)n

n!
〈Xn〉 . (12)

Recalling that

X = N−1(x1 + x2 + . . .+ xN) , (13)

this means that

〈Xn〉 = 〈N−n(x1 + x2 + . . .+ xN)n〉
=
∫∞
−∞N

−n(x1 + x2 + . . .+ xN)np(x1)p(x2) · · · p(xN)dx1 · · · dxN .
(14)

Thus we can write

PX(f) =
∑∞

n=0
(2πif)n

n!
〈Xn〉

=
∑∞

n=0
(2πif)n

n!

∫∞
−∞N

−n(x1 + . . .+ xN)np(x1) · · · p(xN)dx1 · · · dxN
=
∫∞
−∞
∑∞

n=0

[
2πif(x1+...+xN )

N

]n
1
n!
p(x1) · · · p(xN)dx1 · · · dxN .

(15)

Note that the sum through the 1/n! factor is just the Taylor series for another exponential,

so we can write this as

PX(f) =

∫ ∞
−∞

e2πif(x1+...+xN )/Np(x1) · · · p(xN)dx1 · · · dxN . (16)

The exponential is of course the product of the exponential of the individual terms in the

exponents, so

PX(f) =

[∫ ∞
−∞

e2πifx1/Np(x1)dx1

]
× · · · ×

[∫ ∞
−∞

e2πifxN/Np(xN)dxN

]
. (17)
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But all of the xi’s are drawn from the same probability distribution p(x), so this becomes

PX(f) =

[∫ ∞
−∞

e2πifx/Np(x)dx

]N
. (18)

Now we’ll Taylor-expand the exponent once more, but this time we will keep only the first

few terms:

PX(f) =

{∫ ∞
−∞

[
1 +

(
2πif

N

)
x+

1

2

(
2πif

N

)2

x2 +O(N−3)

]
p(x)dx

}N

. (19)

Using 〈x〉 =
∫∞
−∞ xp(x)dx and similarly for 〈x2〉, we get

PX(f) =
[
1 + 2πif

N
〈x〉 − (2πf)2

2N2 〈x2〉+O(N−3)
]N

= exp
{
N ln

[
1 + 2πif

N
〈x〉 − (2πf)2

2N2 〈x2〉+O(N−3)
]}

.
(20)

In the second step we just used the identity Y N = exp(N lnY ).

Now we use Taylor series again: ln(1 +x) = x− 1
2
x2 + 1

3
x3 + . . .. Remember that we are

thinking about the limit N →∞, which means that our logarithm is indeed of an argument

that is 1 plus a small quantity. With this approximation, and expanding to the square of

that small quantity, we get

PX(f) = exp

[
N

[
2πif

N
〈x〉 − (2πf)2

2N2
〈x2〉 − 1

2

(2πif)2

N2
〈x〉2 +O(N−3)

]}
. (21)

Simplifying the exponent, and regrouping terms, we get

PX(f) = exp
[
2πif〈x〉 − (2πf)2(〈x2〉−〈x〉2)

2N
+O(N−2)

]
≈ exp

[
2πifµ− (2πf)2σ2

2N

]
,

(22)

because 〈x〉 = µ and 〈x2〉 − 〈x〉2 = σ2.

Taking the Fourier transform again,

P (X) =
∫∞
−∞ e

−2πifXPX(f)df

=
∫∞
−∞ e

2πif(µ−X)−(2πf)2σ2/2Ndf .
(23)

This integral is of the form ∫ ∞
−∞

eiaf−bf
2

df = e−a
2/4b
√
π/b , (24)

so after we substitute a = 2π(µ−X) and b = (2πσ)2/2N we get finally

P (X) =
1

(σ/
√
N)
√

2π
e−(µ−X)2/2(σ/

√
N)2 . (25)

Q.E.D. (at last!)


