
Bayesian Statistics: Parameter Estimation 2, continuous distributions

In this class, we’ll do another parameter estimation task. Last time we had a finite

number of bins (two or six, in fact). In many circumstances we instead have to deal with

a continuous variable, which therefore has a potentially unlimited number of bins. We can

estimate parameters in the same way as before, but it’s useful to give it a try because there

are some apparent difficulties to overcome.

Suppose that we have measured radial velocities, and we fit a zero-centered Gaussian to

the data. The single parameter of interest is the standard deviation. We have ten data points,

which (after sorting) are velocities of -1.84623, -1.76493, -0.926109, -0.909967, 0.110899,

0.296846, 1.80029, 2.55558, 2.78944, and 3.57825, in units of km s−1. How do we estimate

the standard deviation? It might seem that you would have to bin the measurements, because

otherwise it doesn’t look like a distribution at all (if the bins are narrow, there are either

zero points or one point in a bin, so there are no peaks). This is, however, not the case, so

let’s see how it works.

First, we realize that our Gaussian has the form

N(v)dv = A exp(−v2/2σ2)dv , (1)

where σ is the standard deviation and A is a normalization factor. Therefore, it might

appear that there are two parameters. However, if we normalize the distribution so that

the total number expected in the model equals the number of data points, then in our case∫∞
−∞N(v) dv = 10. This implies that A = 10/(

√
2πσ2).

Now we construct the log likelihood. As we showed earlier, when we normalize so that∑
imi is a constant, the only important term in the log likelihood is

∑
di ln(mi), where the

sum is over all bins, di is the number of counts in bin i, and mi is the predicted number

of counts in bin i from the model. If we imagine dividing the data space into an enormous

number of narrow bins, though, we realize that the ones without counts don’t contribute,

because di = 0. Therefore, the sum really only needs to go over the bins that contain counts.

Next, what is mi? It is the expected number of counts in a bin. Suppose that a bin has width

dv at velocity v. Then the expected number is N(v)dv. This appears to depend crucially

on the bin width, but remember that we’re just comparing differences of log likelihoods.

Therefore, if we use the same bin widths for every value of σ (which we obviously will), the

ln dv values will be in common between all models, and hence will cancel. If we make the

further assumption that we’ve done the smart thing and chosen small enough bins that the

ones with data all have di = 1, then we get finally

lnL =
∑
i

ln[N(vi)] + const , (2)



where the vi are the measured velocities. The depends only on the values of the distribution

function at the measured velocities.

This is actually a general result for continuous distributions, in any number of dimen-

sions. After you’ve normalized, the log likelihood is just the sum of the log of the distribution

function at the measured locations if you have enough precision that there is at most one

count per bin.

For a general model, one would now calculate the log likelihood numerically for a set

of parameter values, then maximize to get the best fit. In our particular case, we can do it

analytically. Dropping the constant,

lnL =
∑
i

[
ln(10/

√
2π)− lnσ − v2i /2σ2

]
. (3)

This sum is over the ten measured velocities. We note that the first term is in common

between all models, so we drop it. We then have

lnL = −10 lnσ − (1/2σ2)
∑
i

v2i . (4)

The sum of the squares of our velocities is 38.7. Taking the derivative with respect to σ and

setting to zero (to maximize) gives

−10/σbest + 38.7/σ3
best = 0

σbest = (3.87)1/2 = 1.967 .
(5)

When we compute the 68.3% credible region, we need to (1) select a prior on the standard

deviation, and (2) decide on how we want to define the credible region. When we think

about a prior, there are apparently many choices. For example, unlike with our previous

discrete case, where a was limited to being between 0 and 1, σ could in principle range from

0 to∞. What should we choose? We can get an answer to that by looking at the likelihood:

L ∝ σ−10e−38.7/(2σ
2) . (6)

We see that at very small σ the likelihood drops off sharply (because of the e−38.7/(2σ
2) factor)

and similarly at very large σ (because of the σ−10 factor). Thus we actually can take σ to be

equally probable in a large range, say 0 to 20, and then have it end abruptly above 20. There

is virtually no likelihood above 20, so having it be constant from 0 to 50, or 0 to 1000, will

lead to almost identical conclusions. This is an example in which the data are informative

enough that reasonable priors will lead to the same conclusion. There are also times when

we might not know the scale of σ, in which case perhaps a reasonable prior might be that

there is equal probability in equal ranges of lnσ (so that, for example, the prior probability

would be the same from 0.1 km s−1 to 1 km s−1 as it is from 1 km s−1 to 10 km s−1). Then



the prior would be proportional to 1/σ from some minimum to maximum (can you see why?)

and the posterior would thus be proportional to σ−11 instead of σ−10; not a big difference.

So if we choose a flat prior p(σ) = 1/σmax from σ = 0 to σ = σmax, with σmax > 20, and

define the credible region as before (minimum contiguous region in σ that includes 68.3% of

the probability), we find that the credible region runs from σ = 1.56 to σ = 2.565. In fact,

σ = 2.5 was used to generate the data.

As with our discrete-data example, let’s now think about how we would do this using

χ2. First of all, we wouldn’t use χ2; if we have only 10 total points, which we then have to

bin, that’s just ridiculous. But let’s do it anyway to see how it would be done.

How should we bin the data? If, for example, we put all of the negative radial velocities

in one bin, and all of the positive radial velocities in the other, then we have no discriminatory

power at all! Why? Because the integral from −∞ to 0 (or 0 to +∞) of a normalized zero-

centered Gaussian is the same regardless of the standard deviation, which is what we want

to calculate. Thus the chi squared will be completely independent of the standard deviation.

This is an extreme example of the loss of information due to binning! It also points out the

arbitrary nature of binning; what should you group together?

But let’s forge on anyway. Suppose that we look at the data before making our bins,

and decide to make the bins −∞ to −0.91 (in km s−1), −0.91 to 1.0, and 1.0 to +∞, so that

there are respectively 3, 3, and 4 counts in our bins. Call those bins 1, 2, and 3. Then the

expected number in each bin, for a standard deviation σ, are

m1 =

∫ −0.91
−∞

10√
2πσ2

e−v
2/2σ2

dv , (7)

m2 =

∫ 1.0

−0.91

10√
2πσ2

e−v
2/2σ2

dv , (8)

and

m3 =

∫ ∞
1.0

10√
2πσ2

e−v
2/2σ2

dv , (9)

and d1 = 3, d2 = 3, and d3 = 4. If we do this then we find that the data-variance χ2 is

minimized at σ = 2.45 and using ∆χ2 = 1 gives a range from σ = 1.603 to σ = 4.767. Feel

free to calculate the best value and the range for the correct model-variance χ2.

This is obviously worse and less representative than what we got from the Bayesian

analysis, but it’s also clearly unfair to χ2; 3, 3, and 4 counts in the bins is hardly in the

n → ∞ asymptotic limit! So now it’s your turn, using the data file for the blackbody

spectrum. Using the Bayesian approach with likelihoods and a flat prior on the temperature

from 0 to 1 keV, determine the highest-probability temperature and the smallest contiguous

68.3% credible region. Then group them into 3 bins of 20 counts each (with the idea that



we need at least 20 counts to be in the Gaussian regime), and do the same analysis using

χ2. How much information do you lose due to the binning?

Now for some closing remarks regarding parameter estimation and Bayesian analysis

more generally. First, there are times when you simply can’t have infinitely fine data. For

example, in X-ray astronomy, the spectral data you receive is in the form of counts in discrete

energy channels. You can’t break the data apart more finely than that, so you will have to

deal with channels that have more than one count. In addition, if you are interested in the

parameters of the source, you’ll need to use a model of the detector (for X-ray observations,

this comes in the form of a response matrix and effective energy curve) and propagate your

intrinsic source model (in the form of photons per area per time at each photon energy)

through the detector response to get a prediction in energy channel space. Always compare

your model with the data in data space, which is called forward folding! Don’t “backward

fold”, where you try to use the counts in the energy channels to infer the photon properties

of the source. That leads to ambiguity and pain.

Second, so far we have focused for simplicity on cases in which there is only one model

parameter. If there are several parameters, we can do similar things in the sense that we can

still compute the likelihood of the data given the model for a particular combination of its

parameters, and the prior should be specified for all the parameters (jointly in general, rather

than as a product of individual priors). In such cases, it is common that one is only interested

in the distribution of a subset of the parameters (say, only one of them!). In that case, one

marginalizes the posterior probability distribution. That is, suppose now we have lots of

parameters a1, a2, . . . , an. Our posterior probability distribution is P (a1, a2, . . . , an),

normalized so that
∫
P (a1, a2, . . . , an)da1da2 . . . dan = 1. If we only want to know the

probability distribution for parameter a1, independent of the values of the other parameters,

we simply integrate over those other parameters:

p(a1) =

∫
P (a1, a2, . . . , an)da2 . . . dan . (10)

We then have
∫
p(a1)da1 = 1. Similarly, one could find the distribution for the two parame-

ters a1 and a2 by integrating P over a3 through an. The parameters you integrate over are

called nuisance parameters.

Marginalization is not the same thing as (1) finding the parameter combination that

maximizes the likelihood and then (2) finding the distribution of a single parameter by fixing

all but that parameter at the maximum-likelihood values and then treating the problem like

a single-parameter model! This is another approach that is sometimes taken by black-box

analysis codes, and it will only give you a reasonable answer is special circumstances.

Finally, one cautionary point: because the value of the likelihood never enters, one

can happily calculate maximum likelihoods and credible regions for models that are awful!



It’s an automatic procedure. That’s why Bayesians draw a distinction between parameter

estimation and model comparison, which we will treat in the next class.


