
Kernel density estimation

Suppose that you have a complicated function that you can’t represent analytically and

that you can’t sample at a huge number of points. One way this might happen is that

the function is itself very time-consuming to evaluate. Another way is that the “function”

might relate directly to observables; for example, in a problem that Mike Boylan-Kolchin

and I started but haven’t finished, we might think about the location and velocity of satellite

galaxies relative to the main galaxy. We can only see a certain number of satellite galaxies,

so we can’t just keep sampling.

In such a problem, we might want to have an idea of the underlying continuous probabil-

ity distribution in our parameters (such as the position and velocity for the satellite galaxy

example). Is there a way to do this using only a limited set of samples? In particular, can

we do this if our samples are not weighted in any particular way? For example, if we are

looking at satellite galaxies, each galaxy has the same weight.

A standard approach involves kernel density estimation (KDE). Each discrete point in

our sample is replaced by an extended probability distribution, called a kernel, and the prob-

ability density at any given point in the space is then estimated to be the sum of the kernels

at the chosen point, over all of the discrete samples (after proper normalization). Thus if the

chosen point is close to many sample points its estimated probability density will be larger

than if it is far away from any sample point. Once you compute the smoothed approximation

to the probability distribution from your discrete data, you can then sample from it much

more rapidly and can thus perform various statistical tasks with your approximation to the

true distribution.

One might imagine that the best way to maximize information would be for the width

of the kernel associated with each sample point to be very small, because this procedure

would retain nearly full memory of the position of each sample point in the parameter space,

whereas a broad kernel would smooth out and reduce information. Although it is true that

the width of a kernel (usually called the bandwidth in this context) should not be too large

(in the limit of infinite size it guarantees a uniform probability distribution), it is also bad to

have a bandwidth that is too narrow. For example, in the limit that the bandwidth is much

narrower than the distance between any two sample points, every point is effectively isolated

and thus the “smoothed” probability distribution is just a set of spikes. Thus a major issue

in the theory of kernel density estimation is how the bandwidth should be determined. It

turns out that the functional form of the kernel is less important; we choose a multivariate

Gaussian because of its many advantageous mathematical properties.

Before getting into details, we will take advantage of the Wikipedia page on kernel

density estimation, https://en.wikipedia.org/wiki/Kernel density estimation, to show two

figures that indicate how the procedure works. In Figure 1 we see how the KDE approach



Fig. 1.— Comparison of a histogram and a kernel density estimate, from

https://en.wikipedia.org/wiki/Kernel density estimation. The sample values are shown by

the short vertical black lines near the x-axis. On the left we have a histogram of the values. On

the right we have a kernel density estimate; to each point is associated a Gaussian with standard

deviation 1.5 (red dashed lines), and note that the amplitude is the same for every Gaussian. The

final kernel density estimate is the sum of the Gaussians, which makes the blue curve. We see that

the kernel density estimate is smoother than the histogram, and indeed it converges faster to the

true underlying distribution faster than a histogram.



Fig. 2.— Consequences of different choices for the bandwidth, again from

https://en.wikipedia.org/wiki/Kernel density estimation. The original 100 samples are shown by

the short blue vertical ticks near the x-axis, and were drawn from a zero-centered unit-variance

normal distribution (shown by the grey curve). Again, the kernel is a normal distribution. The

red curve shows the result of kernel density estimation when the standard deviation of the kernel

is 0.05; the black curve when it is 0.337; and the green curve when it is 2. We see that when

the bandwidth is too narrow, the KDE curve is very choppy; when it is too wide, we have

“oversmoothing” and important aspects of the distribution are missed; when we choose more

optimally the summed curve is a fairly good representation of the original distribution, although

of course not perfect.



works, where a Gaussian kernel has been used. In Figure 2 we see the result of various

choices for the width of the kernel. Clearly, there are some better choices for the bandwidth

than others, and indeed the choice of bandwidth is much more important than the functional

shape of the kernel (for example, Gaussians are fine for the shape). But how do we choose

the bandwidth?

To explore some of the details of kernel density estimation, we can use http://sfb649.wiwi.hu-

berlin.de/fedc homepage/xplore/ebooks/html/spm/spmhtmlnode18.html as a guide (see also

Rosenblatt 1956, http://dx.doi.org/10.1214/aoms/1177728190; and Parzen 1962,

http://dx.doi.org/10.1214/aoms/1177704472 for some of the original references). We will

now jump to thinking about possibly multidimensional kernels. Then even if we have chosen

to use a Gaussian we have to think about the axis lengths and orientation of the Gaussian

kernel as well as its overall width. For example, one could imagine using a spherical kernel,

which would mean that the bandwidth is the same in any direction. A generalization of this

would be to use a bandwidth that can be represented by a diagonal matrix, with values that

could be different on different parts of the diagonal. A further generalization of this is to

use a full bandwidth matrix H, where H is a real, symmetric matrix. Then, using equation

(3.60) of the first reference above, we find that the estimate of the probability density at a

given point x given H and samples at the points X1,X2, . . . ,Xn is

f̂H(x) =
1

n

n∑
i=1

1

det(H)
K
{
H−1(x−Xi)

}
, (1)

where n is the number of points in our sample. Here K(v), where v is a column vector, is

K(v) = exp(−vTv/2) . (2)

For H we use the rule of thumb from Silverman and Green 1986, Density Estimation for

Statistics and Data Analysis:

H = n−1/(d+4)Σ1/2 (3)

where d is the number of dimensions (of the data; for example, if we measure the 3-D

position of a galaxy and nothing else, then d = 3) and Σ is the covariance matrix. To

calculate the covariance matrix, we assume that each sample point is a d-dimensional vector

(Y1, Y2, . . . , Yd). Let µi be the mean of Yi over the sample, and let E[(Yi − µi)(Yj − µj)] be

the expected value (i.e., the mean) of (Yi− µi)(Yj − µj) over the sample. Then as we saw in

Lecture 8 the ij element of Σ is

Σij = E[(Yi − µi)(Yj − µj)] . (4)

The covariance matrix is real and symmetric, which makes it straightforward to compute its

square root (e.g., see the Wikipedia page on the square root of a matrix): let V be a matrix

with the d eigenvectors as columns. Then we can write

Σ = V DV −1 (5)



where D is the diagonal matrix with the eigenvalues as elements. Taking the positive square

root of D, D1/2, we get

Σ1/2 = V D1/2V −1 . (6)

Public codes exist to compute the orthonormal eigenvectors and eigenvalues of real symmetric

matrices.

Sounds like we’re all set! But there is a fly in the ointment. Look again at Equation 3.

The bandwidth scales with the number of points n like n1/(d+4), where d is the dimensionality

of the data. This is remarkably slow convergence! Even for d = 1, the scaling is n1/5, which

means that to halve your bandwith you need 32 times as many points. That’s not by

itself catastrophic, because with more points the overlap is of course greater and thus your

approximation remains smooth. Nonetheless, because of the slow convergence and because it

is useful to have more than one method for a given task, we will now talk about an alternative

approach.

k-d trees

Another way to construct probability densities is based purely on the points that have

been sampled, rather than attempting to smooth the data as in KDE methods. The

method uses k-d trees, where d means “dimensions” and thus this is a construction of

trees in k dimensions. The basic idea is represented in Figure 3, which we take from

https://dcc.ligo.org/LIGO-P1400054/public/kdtrees.pdf. In brief, one dimension at a time,

you divide the domain into halves, then quarters, then eighths, ..., each time figuring out

the median of the region in question (so, for example, you might divide into halves for the

x dimension, then divide each of those two into halves in the y dimension, then each of

those four into eighths in the z dimension, then in the x direction again if you have three

dimensions in your data).

As always there is ambiguity about how to report a given credible region, but one

good approach is a “greedy algorithm”. After you have divided your region into boxes, you

compute the probability density by simply dividing the number of points in the box by the

volume of the box (normally we won’t have the fortuituous situation depicted in the figure,

where each box has exactly the same number of points). Then you “greedily” take the box

with the highest probability density, then the next highest density, and so on, until you

have reached the desired fraction of the total number of points (e.g., 68.3% if you want a

“1 sigma” credible region). Again, note that there is no smoothing in this procedure; it’s a

simple partition of the points you have already sampled. The intent is not to get a continuous

probability density, but is instead to represent the credible regions. Note that you can do

this for any pair (or triple, or quadruple, ...) of parameters from a converged MCMC sample:

just list all of the combinations of your interesting parameters from the converged sample,

and those provide the points that you partition.



KD
ev

ery
thi

ng

2

multiple runs by confirming that the desired fraction of in-
jections falls within the credible region corresponding to
the stated credible level; see [2] and below for a discussion
of p-p plots. Optimality relates to our ability to minimise
this region, which is important for increasing the useful-
ness of our results. When setting up algorithms we must be
cautious that our optimising methods do not break consis-
tency; consistency is necessary, while optimality is desired.
This is particularly true if we are testing the sampling algo-
rithm as we must have confidence that the post-processing
is never at fault if the resultant PDFs are not consistent.

KD-TREES AND THEIR BIAS

The simplest approach to recovering a PDF from a set of
samples is to impose a grid on the parameter space as a set
of bins. We count the number of samples that fall in each
bin, the result of which will be proportional to the probabil-
ity density. The CR of a given CL is the region that covers
a set of bins that contain a CL fraction of the samples. To
optimise the size of this region we apply a greedy algo-
rithm that starts from the bin with the most samples and,
keeping a running total of samples, counts from the most
populated (highest density) bin towards the least. Once we
have counted the necessary fraction of samples we have
found the CRmin.

This simple method has a few important drawbacks. The
most obvious being that for any non-trivial PDF there is no
single resolution that behaves well over the whole space.
Bins that are too large will hide any detail, while small
bins will often be empty and so are unorderable. The for-
mer significantly hampers our ability to optimize, while the
latter leads to inconsistency. Pushing these 2 scenarios to
their limit, the lowest resolution (1 bin) will only return
the 100% CRmin which covers the entire parameter space,
while as the number of bins goes to infinity the volume of
all CRmin tends to 0.

Instead we turn to a kD-tree method of binning [3],
shown pictorially in figure . This method is similar to
the gridded binning idea except that bin sizes are adaptive;
chosen so that they all contain a similar number of samples.
This means boxes will be large in regions where the sam-
ples are sparse but small where the samples are densely
packed. This is achieved by taking the parameter space,
choosing a particular parameter, ordering the samples by
this parameter and dividing them into 2 bins using the me-
dian. The next parameter is then chosen and the samples
from each bin are again divided according to the samples
median of the new parameter. We continue this process,
looping through all the parameters, until there are a re-
quired number of samples left in each bin. To find credible
regions the same greedy algorithm that was applied to the
gridded space is used, with the ranking of bins by sample
density.

Using kD-trees can greatly improve on our ability to op-

FIG. 1. To construct a kD-tree, the median of the samples is
found and used to divide the parameter space. Repeating this
process in alternating parameters, the parameter space is further
subdivided. Confidence levels are then assigned ’greedily’ by
counting samples in order of bin density.

FIG. 2. In the case of samples taken from a uniform distribution
there will be some statistical fluctuation on where the median is
located. A bias is introduced that results in the recovered 50%
CRmin covering less than half of the parameter space.

timize, while never having empty, unorderable, boxes. We
do not claim that kD-trees are the perfect method for opti-
mising the CRmin, but they are a straightforward method of
doing so and produce resultant PDFs in an easy to use for-
mat. While we have addressed the issue of optimality, the
necessary property of consistency has not been checked.

We now show that the use of a greedy algorithm to assign
credible levels introduces a bias that breaks the requirement
of consistency, and so will affect both the kd-trees and the
gridded binning. Consider figure 2; if we have a number of
samples that are taken from a uniform distribution (24 in
this case) and apply the usual kd-tree algorithm once, we
will have 1 bin that is larger and 1 smaller due to Poisso-
nian noise. While some variance in box size is expected, as
we have a finite number of samples, a bias is introduced in
which the smaller box is always chosen as the 50% credi-
ble level. A new sample picked from the same distribution
would not have a 50% chance of falling in the designated
50% CRmin. Consistency is not broken due to the CRmin

being too small in this one case, but that a greedy algorithm

Fig. 3.— A good representation of how a k-d tree works for two dimensions (d = 2), from

https://dcc.ligo.org/LIGO-P1400054/public/kdtrees.pdf. We start with 48 points sampled accord-

ing to a posterior probability density. Let us call the horizontal axis “x” and the vertical axis “y”.

The first step is to place a vertical bar (at constant x) that divides the sample in half, so that there

are 24 points on each side. The next step is to place bars at constant y in each of the halves so

that there are 12 points above and 12 below; note that the bars have different y-values on each

side. Then each of the four regions is divided in two by a bar at constant x, then finally each of

the resulting eight regions is divided in two by a bar at constant y. As we have discussed, the con-

struction of the credible regions is nonunique, but here a “greedy algorithm” is used: starting with

the highest-density region (in this case, the smallest box, given that each box has by design three

points) and progressing to lower-density regions until the desired fraction of the total probability

has been reached.



This method is fast and easy to implement, but there is a subtle bias pointed out by

the authors of https://dcc.ligo.org/LIGO-P1400054/public/kdtrees.pdf. Suppose we have

selected some points from a one-dimensional distribution that is uniform in some range and

zero outside that range. Due to fluctuations, the median of that distribution will not be in

the exact middle of the range, and this will be true for each subsequent subdivision. Thus

there will be a bias, which will therefore lead to a misrepresentation of the distribution.

The authors suggest that the remedy is to (1) begin by picking, at random, half of the

sample points, (2) use that half to produce the bounds of the boxes that result from the

partitioning of the data space, then (3) populate the boxes only with the other half of the

points to get the final result and read out the densities. In the example of a uniform density,

the original procedure would typically produce boxes of different sizes, but in step (3) the

larger boxes will likely have more points put in them, which means that the final density

estimate will not be biased. I have used this approach in my own work, and it seems to be

reliable and fast.

In summary, there are different ways to take a finite set of samples and use them to

represent an underlying smooth distribution. As always, I recommend that you try them

and and determine which approach suits your problems best!


