
1. Written in Cartesian coordinates, a Minkowski spacetime has the line element

ds2 = −dt2 + dx2 + dy2 + dz2 . (1)

Write explicitly the values of the covariant components of the metric tensor, ηαβ. Also write

explicitly the values of the contravariant components, ηαβ.

The following problems involve manipulation of tensors in the Schwarzchild spacetime

ds2 = −(1 − 2M/r)dt2 + dr2/(1 − 2M/r) + r2(dθ2 + sin2 θdφ2) . (2)

Here M is the gravitational mass (that would be measured by observing the orbit of an

object at a very large distance), and r is the “circumferential radius”, i.e., the circumference

of a circle divided by 2π. For particles moving on geodesics in this spacetime, the specific

angular momentum is uφ and the specific energy is −ut, and both are conserved.

2. Write explicitly the covariant components gαβ and contravariant components gαβ of the

metric tensor.

3. Consider a particle in circular motion, with ur = uθ = 0. Using the fact that uαuα = −1

for a particle with nonzero rest mass, derive the specific energy −ut as a function of uφ.

Note that uφ does not have to be the value for a Keplerian orbit. To test your expression,

consider a particle on the surface of a nonrotating star of radius R (such that uφ = 0). Does

your expression make sense in the Newtonian limit M/R ≪ 1?

4. The relativistic equation of motion for a particle with nonzero rest mass is

d2xα

dτ 2
+ Γα

µγ

dxµ

dτ

dxγ

dτ
= 0 . (3)

where τ is the proper time (this would be replaced by an affine parameter λ for a massless

particle) and

Γα
βγ =

1

2
gαµ (gµβ,γ + gµγ,β − gβγ,µ) . (4)

In the Schwarzschild spacetime, derive the radial equation of motion d2r/dτ 2+??? = 0. You

may choose your coordinate system so that uθ = 0.

5. Using your equation of motion, derive the specific angular momentum of a circular orbit

(which has d2r/dτ 2 = 0).



6. Find the radius r at which the angular momentum is a minimum, and the value of the

minimum angular momentum. By considering a circular orbit that loses a small amount of

angular momentum, show that the radius of minimum uφ is also the minimum radius of a

stable circular orbit.

7. Using your expression for the specific angular momentum of a circular orbit, and for the

specific energy, to derive the radius of the marginally bound orbit, which is where −ut = 1

and hence a slight perturbation outward could send the particle to infinity.

8. The Schwarzschild time coordinate t is the elapsed time as seen at infinity. Therefore,

the angular velocity of an orbit as seen from infinity is dφ/dt = uφ/ut. Use this and your

previous expressions to derive the angular velocity of a circular orbit at radius r, as seen at

infinity.

9. A colleague of yours, Dr. I. M. N. Sane, plans to explore a black hole more directly. His

idea is to free-fall radially to a nonrotating 10M⊙ black hole, then, just outside the horizon,

fire his rockets outward to escape. Ignoring the overwhelming acceleration he would feel

when he fired his rockets, estimate the maximum tidal force he would feel during his radial

free fall and use that estimate to counsel him on whether his trip is advisable.

10. Confirm the expressions for the Christoffel symbols Γα
βγ, the Riemann tensor Rα

βγδ, the

Ricci tensor Rαβ, and the Einstein tensor Gαβ given in the lecture, to linear order in hαβ.

11. Confirm that switching to the trace-reversed perturbation h̄αβ = hαβ −
1

2
ηαβh and

applying the Lorentz gauge condition h ,α
αβ = 0 reduces the Einstein equation to

Gαβ = −
1

2
⊓⊔h̄ . (5)

12. Now, impose the transverse traceless condition. Suppose the wave is traveling in the

z direction. How many components of the perturbation tensor can be nonzero? After

symmetry and tracelessness are imposed, how many independent components are there?


