
Consider a population of binaries, each of which has reduced mass µ and total mass M .

Suppose they are all circular, and that the population is in steady-state, meaning that the

number in a given frequency bin is simply proportional to the amount of time they spend

in that bin. Also assume that the only angular momentum loss process is gravitational

radiation, rather than mass transfer or other effects. For each of the following problems,

derive the answers in general and then apply the numbers to WD-WD binaries, where we

assume that both masses are 0.6 M⊙.

1. Using the Peters equations for circular orbits of point masses, derive the frequency fmin

such that the characteristic inspiral time Tinsp ∼ 1/ [d ln f/dt] is equal to the Hubble time

TH ∼ 1010 yr. What is the frequency specifically for a WD-WD binary?

2. Below fmin the distribution dN/df of sources with frequency will depend on their

birth population. Above it, gravitational radiation controls the distribution. Derive the

dependence of dN/df on f for f > fmin (the normalization is not important).

3. Suppose there are 109 WD-WD binaries at frequencies fmin < f < 0.1 Hz. To within

a factor of 2, compute the frequency fres above which you expect an average of less than

one WD-WD binary per df = 10−8 Hz frequency bin (this is 1/3 yr, or about the frequency

resolution expected for the LISA experiment). Very roughly speaking, above fres one can

identify individual WD-WD binaries, whereas below it is the confusion limit.

4. Dr. I. M. N. Sane doesn’t understand why everyone is so worried about white dwarf

noise. He asserts that with so many WD-WD binaries in a given bin, the total flux in

gravitational waves will be very stable; in particular, he believes that from frequency bin to

frequency bin, the flux will vary so little that even a weak additional source will show up

easily. He comes to this conclusion by taking the square root of the flux to get a measure of

the amplitude.

Show Dr. Sane the error of his ways by doing the following model problem. Let there be

N sources in a given frequency bin. Suppose that they are all equally strong, but have

random phases between 0 and 2π. Add the complex amplitudes based on those random

phases. Take the squared magnitude of the total amplitude as a measure of the typical flux.

Determine the mean and standard deviation of the flux that results. You should find that,

unlike what happens when you add sources incoherently (i.e., square the amplitudes, then

add), the standard deviation of the flux is comparable to the flux, hence Dr. Sane’s idea

fails.



The next several questions will relate to extreme mass ratio inspirals (EMRIs), which are

an important class of events expected to be observable with LISA.

5. If there is a supermassive black hole (SMBH) at the center of a galaxy, then out to a

radius where the orbital speed equals the general velocity dispersion at great distance, the

SMBH controls the dynamics. If the SMBH mass is M and the velocity dispersion is σ,

calculate the “radius of influence” rinfl inside of which the SMBH dominates.

6. When we gave the relaxation time in the notes, we assumed no dominant object in the

middle. More generally, the local relaxation time is
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where ln Λ ∼ 10 comes from the Coulomb integral, σ(r) is the local velocity dispersion, m

is the typical mass of an object, and n(r) is the local number density of objects. Consider

a region r < rinfl, where σ(r) is given by the Keplerian orbital speed. If n(r) ∝ r−3/2 (a

typical profile), how does the relaxation time depend on r? In contrast, for r ≫ rinfl, assume

that n(r) ∝ r−2 and σ(r) is constant. Then how does the relaxation time depend on r?

An essential concept in the study of EMRIs is the “full loss cone” and “empty loss cone”

regimes. The “loss cone” is the set of directions of orbits from a certain radius that allows

capture of an object by the SMBH. For example, a single stellar-mass black hole can go so

close to the SMBH that it radiates lots of gravitational radiation, and its orbit undergoes

an inspiral leading to a merger. Or, a binary black hole could get close enough that it is

separated by the tidal field of the SMBH, leaving one member of the binary bound.

As this region is depopulated, the rapidity with which it is filled depends on how fast the

angular momentum of an orbit is changed. Suppose that the loss cone as seen from radius

r involves orbits of angular momentum between J = 0 and J = JLC. Then as orbits with

J < JLC are eliminated, orbits with J > JLC move in to fill them. If the typical change of J

in one orbital time torb is ∆J ≫ JLC then the loss cone is refilled in a dynamical time, and

this is the full loss cone regime. If ∆J ≪ JLC then the loss cone has to be filled diffusively,

which takes much longer than one orbit. This is the empty loss cone regime.

7. Here’s your first question: since motion in angular momentum space is a random walk,

how long does it take to diffuse by JLC ≪ Jcirc, where Jcirc is the angular momentum of a

circular orbit with the same energy? Call this time tJ . Remember that trlx is basically the



time needed to change angular momentum by Jcirc. Given that for a Keplerian orbit the

angular momentum scales as (1 − e2)1/2, how does tJ scale with e for (1 − e) ≪ 1?

8. Now for some numbers. Capture of a single 10M⊙ black hole by emission of gravitational

radiation near a 106 M⊙ SMBH requires a pericenter distance of about 0.1 AU. The standard

relaxation time (time required to change by ∼ Jcirc) is about 109 yr at 1 pc (roughly equal

to rinfl). Given this, how does tJ compare to torb at 1 pc? If n(r > rinfl) ∝ r−2, how does tJ
compare to torb at r > rinfl? If n(r < rinfl) ∝ r−3/2, how does tJ compare to torb at r < rinfl?


