

GeneriCAN: CAN Node
Design for CARMA
James Lamb, Jim Fredsti, and Brad Wiitala

1.0
February 6, 2003

CARMA GeneriCAN: CAN Node Design for CARMA

Change Record

DATE AUTHOR SECTIONS/PAGES AFFECTED REVISION
REMARKS

Revision: 1.0 Page 2 of 11

CARMA GeneriCAN: CAN Node Design for CARMA

GeneriCAN: CAN Node Design for CARMA
James Lamb, Jim Fredsti, and Brad Wiitala

Abstract
We present the basic design of hardware and software for a generic CAN node based
on the experience at OVRO. The intention is not to present a single CAN node design
to perform all functions, but rather to provide a template from which to develop
hardware and software for specific applications. A certain minimum hardware
functionality is provided, with a prescription for adding new capabilities. A kernel of
software will be provided to implement core capability such as scheduling of tasks in
a time-critical manner, driver software for various types of devices, and templates on
which new projects can be based.

Many CARMA-specific requirements are already implemented. These include:
precision timing and time stamps; a CAN connector definition that includes Reset,
Timing, and Power lines; a CAN address format standard; and fast and slow monitor
package handling.

Numerous different CAN nodes will be required for CARMA so it is important to
maintain reliable control of code and documentation. No specific procedures are
currently implemented, but these must be implemented as a CARMA-wide solution.

1 Introduction
Embedded processors communicating using the CAN protocol will be widely used in
CARMA. All CAN nodes that are to be integrated into the CARMA system have to interact
with the higher level software in a homogeneous way, accepting commands with standard
addressing and formatting, and streaming back monitor information with a predefined format
and timing. While nodes for different applications will require different hardware and software
implementations, there will be a core of functions that are similar across virtually all the
implementations. There will also be a pool of hardware and software fragments that can be
used as a ‘mix-and-match’ resource for new designs

In this document we outline a basic hardware design and core set of software based on
developments at OVRO over the last two years. Modules, such as the COBRA downconverter
controllers, have been implemented and successfully integrated into the OVRO control
system. It is proposed that this ‘template’ design will be reviewed for general CARMA
suitability and a core set of hardware and adopted for all new designs. Note that his does not
imply that all CAN nodes are identical, but just that common functionality is uniformly
implemented.

A CAN node has an embedded microprocessor controlling one or many hardware functions of
devices that are located close to the node. Each node should be recognized by the high-level
system when it is plugged into an appropriate bus. Messages on a CANbus have headers that

Revision: 1.0 Page 3 of 11

CARMA GeneriCAN: CAN Node Design for CARMA

identify devices and control priority. A standard for messaging has been adopted by OVRO
[1]. The 29-bit Message ID allows the CAN node to be addressed either by API or Board Type
and whether or not the Linux host should ignore the message. Message types (with several
standard ones defined) and board or API type are also included in the ID. Data may be
included in payloads of up to eight bytes as required. This standard appears equally suitable
for CARMA use.

CAN hardware node type and version information is stored in unique ID 1-Wire® devices,
and the API designation visible to the high-level system type is embedded in the software. A
single hardware design may be programmed with several API types, and a single API type
may be implemented on different hardware implementations (mainly hardware revisions that
do not change the functionality presented to the high-level software).

2 Hardware Description

2.1 Overview
The CAN hardware is based on a commercial module (a phyCORE “single board computer”)
that plugs into a host board designed to implement whatever hardware functions are required
for a given application. While each application will probably require a different board design,
there is a core of functionality that should be implemented on virtually all boards. This ensures
some uniformity of parts and allows certain software modules to be re-used with no changes
other than defining constant values. Circuit diagrams are available in OrCAD format for
inclusion in future designs.

Because of the limited number of I/O ports on the phyCORE module, significant additional
circuitry is required for attaching many peripheral devices. This should be accomplished with
the same method of decoding for all applications so that the same software drivers can be used
(differences in address for the same device on different boards can be accommodated by using
a #define for the address in the project header). A digital I/O scheme is included in this
design for this purpose.

The functions that have been implemented to date are described below, and the list will
continue to expand.

2.2 Processor Module
The Phytec phyCORE XAC3 module [2] uses the PhilipsXAC3 microprocessor with in-built
CAN communications. The module has two sets of pins that allow it to be plugged into the
board that will hold all the application-specific circuitry. In addition to the processor the
module includes: memory; address decoder; RS-233, RS-485, and CAN drivers; a real-time
clock (RTC). The XAC3 chip is socketed, so it can be replaced by an in-circuit emulator (ICE)
for debugging in real time.

While the phyCORE module has some shortcomings, particularly in the number of digital I/O
lines, it has most of the functionality required for CARMA applications. The module board
has components on both sides, and components may be placed underneath it on the host board,
yielding a high component density in a 55 mm × 47 mm area.

2.3 Serial Port
The RS-232 serial port is available on a D-connector and is the primary means of downloading
programs and debugging software.

Revision: 1.0 Page 4 of 11

CARMA GeneriCAN: CAN Node Design for CARMA

2.4 CANbus Interface
CARMA ICD 6000 specifies the physical and electrical characteristics of the CANbus
interface. In essence it specifies an RJ-45 connector that carries the CANbus signals, a Reset
pair, a Timing pair and a +12 V Supply that can be used to power CAN nodes that have modest
power requirements.

2.4.1 CAN bus
Drivers for the CANbus are incorporated on the phyCORE module. The high-speed bus (1
Mb/s) is implemented. Typically, a CAN node has two RJ-45 connectors so that nodes may be
easily chained together, with the CAN drivers connected in a ‘T’. Restrictions on the length of
the ‘T’ are given in ICD 6000 and are easily met.

2.4.2 Reset
A remote reset is implemented that can be used to reset the microprocessor and any other
hardware on the board. For noise immunity it is implemented as an RS-485 signal on a twisted
pair as described in ICD 6000.

2.4.3 Timing
Timing signals are brought on to the board on the CAN connector. The timing signal (e.g.,
1 pps) must be the same for all nodes on a given bus, but different nets can have different
timing signals as required.

2.5 Data and Address Lines
19 address lines and 16 data lines are available from the phyCORE module. Some of the
address lines are used for digital I/O (see below).

2.6 Ports
Eleven ports are available from the phyCORE module. Almost all of these are allocated in the
template design as follows:

Port Function
1 SPI
2 SPI
3 SPI
4 SPI
5 1-Wire Bus
6 UART (RS-232/RS-485)
7 UART (RS-232/RS-485)
8 External Interrupt, Timing Reference
9 External Interrupt

10 Unallocated
11 Unallocated

2.7 Timers
There are three timers. One is used for the pacer (see below) and one for the UART, while the
third one may be used as needed.

Revision: 1.0 Page 5 of 11

CARMA GeneriCAN: CAN Node Design for CARMA

2.8 Real-Time Clock
Accuracy of the real time clock is not sufficient for most CARMA time-critical tasks. These
are handled with a timer and the operating system software. Non-critical applications may use
the RTC as appropriate.

2.9 Digital I/O
Potentially there are up 138 read and 138 write bits. Typically 8 × 8-bits are implemented. Of
these, the first byte is allocated for software LED’s, and one byte for chip select addressing.
Both are described below.

2.10 Status LED’s
Several LED’s are used, three directly connected to the hardware and the remainder under
software control. At least five of those under software control should have the same functions
for all nodes. The remainder may be used for application-specific purposes, or not included on
the board.

2.10.1 Hardware LED’s
These are connected directly to the relevant hardware:

LED Function Color
1 Reset Red
2 Timing Yellow
3 5 V present Green

2.10.2 Software LED’s
Software LED’s are connected to 1 byte of the digital outputs at. Their standard functions are:

LED Function Color
1 Pacer (5 Hz) Green
2 CAN Error Yellow
3 CAN Tx Yellow
4 CAN Rx Yellow
5 General Error Red
6 Unallocated –
7 Unallocated –
8 Unallocated –

2.11 One-Wire Bus and Devices
A general 1-Wire bus is implemented. All boards will have at least one 1-Wire device, a
DS2430A, that is used to identify the board type and serial number in a standard format [1].
Many boards will have a second 1-Wire device that provides the location of the board. The
second device may, for example, be on a backplane that the board is plugged into to indicate
which slot it is inserted in. This allows the software and hardware to be completely generic for
a given board type but allow the high-level software to distinguish among different units
without resorting to board jumpers or software constants.

Other devices may be connected to the bus for temperature monitoring, remote ADC’s, etc.

Revision: 1.0 Page 6 of 11

CARMA GeneriCAN: CAN Node Design for CARMA

2.12 SPI Devices
Many devices use the Serial Peripheral Interface protocol. Although the hardware
specification is the same for all, there are different implementations of the timing that are
handled in the software driver. Multiple devices may be connected to the SPI bus. There are
two different ways that can be used to address different devices. The simplest is to connect all
the SPI devices to the same SPI bus and to select the device using a chip select (CS) line. The
template design uses two bytes from the digital I/O, for a total of 16 devices. The second
method is applicable only to certain devices that may be chained together. The data are
clocked through all the devices and then strobed into them all at the same time.

Some of the devices that have been incorporated to date are as follows:

2.12.1 Memory
An 8k × 8 EEPROM (Atmel AT25640) is implemented for storing data. Although re-writable
ROM is available on the phyCORE module, having persistent memory on the application
board keeps the data with the board even if the phyCORE module needs to be changed.

2.12.2 ADC’s and DAC’s
The following analog I/O devices have been implemented:

Device Function Comments
AD7707 16-bit, 3-channel ADC

MAX1270 12-bit, 8-channel ADC
LTC1658 14-bit DAC
LTC1668 16-bit DAC
MAX3110 SPI UART U. Chicago
AD7676 16-bit ADC U.C. Berkeley

ADG528F 8-ch MUX U.C. Berkeley
AD7841 14-bit DAC U.C. Berkeley

2.12.3 Temperature Sensors
An AD7814 temperature sensor has been implemented, and is useful for monitoring the
temperature of the module.

2.12.4 UART
A MAX3110 SPI UART (separate from the program/debug UART) that is required for
controlling Zaber linear actuators for Gunn tuning and attenuator setting via an RS-232 control
is being implemented by U. Chicago.

2.13 Voltage Monitoring
All power supply voltages on the board are monitored via the MAX1270 ADC.

3 Software Design

3.1 Overview
There is no standard operating system provided for the phyCORE module, so one has been
developed for OVRO applications that should be suitable for CARMA use. Most of the
programming is done in C, with some time-critical sections in Assembly Language. Code can
be divided into three sections: the core operating system, drivers, and the application code.

Revision: 1.0 Page 7 of 11

CARMA GeneriCAN: CAN Node Design for CARMA

The first should be regarded as ‘read-only’ and should be regarded as uniform across all
applications. Releases will be as a package and have version number information embedded.

The core of the operating system is contained in four files, opsys.c, pacer.c, errors.c,
and canerrors.c. Each device will have a driver in a separate file <name>dvr.c. These are
all supplied as source code and contain a header file, project.h, that can contain defines for
values to use in the system software, such as names for the status LED’s.

Each implementation of a CAN node will have code specifically written for it. Most
applications will require code to communicate with the serial port for debugging purposes.
Although the commands and responses will vary greatly from one application to another the
basic functionality will be similar. A code template, monitor.c, is therefore provided with
some skeleton code that can be extended as appropriate. Other files will contain functions that
can be sent to the task dispatcher for executing specific tasks.

Any given application will be built with all the standard operating system code, the drivers for
the devices used, and the application code. The monitor code may be included or excluded
from the final build, depending on speed and memory restrictions.

Most of the functionality is described in detail in [3, 4] and a summary is given below.

3.2 Operating System
3.2.1 opsys
opsys.c contains the core of the operating system for the Phytec module. It is responsible
for managing the task queue and scheduling and dispatching tasks to the pacer. Input on the
debugging serial port is detected and queued.

3.2.2 pacer
Functions in pacer.c take care of maintaining absolute time and timing of all tasks. They
respond to the timer interrupt to start tasks on appropriate time boundaries.

3.2.3 errors
A general error handler with error logging is implemented in errors.c.

3.2.4 vectors
Definitions of the interrupt vectors used by the software, and hardware (timers, CANbus,
UART, and SPI) are contained in vectors.c.

3.3 Drivers
Several drivers have already been implemented and more are in the process of being added.
These include:

3.3.1 Bus Drivers

3.3.1.1 UART
uartdvr.c handles the I/O on the serial port, providing a FIFO buffer for data. It also allows
CAN messages to be echoed to the serial port.

3.3.1.2 CAN
candvrs.c deals with receiving and transmitting CAN messages and handling errors on the
CANbus. Only messages destined for the particular CAN node are accepted and put into a

Revision: 1.0 Page 8 of 11

CARMA GeneriCAN: CAN Node Design for CARMA

buffer. A function is provided to generate a CAN address that is compliant with the OVRO-
defined protocol.

3.3.1.3 1-Wire
The 1-Wire driver in onewiredvr.c will search for all devices on the 1-Wire bus. In
particular it will identify the devices that hold the CAN node type and serial number, and the
CAN node location.

3.3.1.4 SPI
Various possible hardware timing sequences for the SPI bus are coded in spidvr.c, with
sections in Assembly Language to speed up communications.

3.3.2 SPI Devices
SPI drivers have been written for the following devices:

Device Driver File Function
AD7707 ad7707dvr.c 16-bit, 3-channel ADC
LTC1658 dacdvrs.c 14-bit DAC
LTC1668 dacdvrs.c 16-bit DAC
AT25640 eeromdrv.c 8k × 8-bit EEROM
MAX1270 max1270dvr.c 12-bit, 8-channel ADC

3.3.3 Other I/O
Routines for turning LED’s on and off at specified intervals, internal RAM checks and various
other routines are contained in otherio.c.

3.4 Application Layer
3.4.1 Application Code
The top level application code, <projectname>.c, contains the main(void) entry point to
for the code. It supplies initialization routines, state machines, unit conversions, hardware
control algorithms, etc.

3.4.2 Pacer Tasks
Any tasks that have to be dispatched to the pacer are defined in pacertasks.c.

3.4.3 CAN Messages
Many CAN messages will be the same for all CARMA nodes, and most nodes will have a set
particular to the application. All messages, standard and application-specific, are coded in the
file canmsgs.c. Code in this file is responsible for interpreting incoming CAN messages and
activating the appropriate code in response. It also assembles and sends out the monitor
packages. An important task of this code is also to take care of time synchronization requested
by the CAN messages.

3.4.4 RAM/ROM
ramromdefs.c contains declarations of RAM and I/O address spaces.

Revision: 1.0 Page 9 of 11

CARMA GeneriCAN: CAN Node Design for CARMA

3.5 Utility Code
3.5.1 Conversions
Sets of routines in genrtn.c handle conversions between different data representations
(bytes, BCD, strings, etc.). There are also several utility functions for operations on strings.

3.5.2 Tables
At present all table operations are coded in the applications where they are used. In future a set
of standard functions could be extracted into a single file to be compiled directly or for cut-
and-paste into other source code.

3.5.3 Date/Time
Currently the software provides both coarse and fine module time control. Coarse time
control guarantees better than 10 ms resolution while fine control guarantees better than
100 µs resolution. The fine control uses the Timing signal available as interrupt (0). The
coarse timing uses time stamps sent from the system host which is synchronized to NTP.

4 High-Level Software
Although this document is primarily intended to cover the CAN node itself, it is useful to note
that there has been concurrent development of high-level software for the CARMA-standard
cPCI crate running Linux with a Janz CANbus card.

5 Documentation and Version Control

5.1 Hardware
At some point a Web accessible document depository will be created, but this is not yet
available.

5.2 Software
No standard documentation or version control has been implemented, but these will probably
use Doxygen and CVS.

6 Development Tools
Tasking’s Embeded Development Environment and cross-compilers for C and Assembly
Language [5] are currently used at all the CARMA sites. OVRO also has an in-circuit
emulator (Ceibo EB-XA/EB-XA-C3, [6]). For testing hardware and algorithms there is an in-
house board that plugs into the phyCORE socket on the application board controlled by a PC
using Visual Basic or LabVIEW through a DIO24 digital I/O card.

7 References
[1] D. P. Woody, "Proposed CANbus message ID protocol," OVRO, Caltech 26 Mar.

2001.

http://www.ovro.caltech.edu/ovrodocs/CANbus/CANbus_Message_ID_Protocol.pdf

Revision: 1.0 Page 10 of 11

http://www.ovro.caltech.edu/ovrodocs/CANbus/CANbus_Message_ID_Protocol.pdf

CARMA GeneriCAN: CAN Node Design for CARMA

[2] Phytec Elektronik GmbH, "phyCORE-XACx Hardware Manual," June 2000.

[3] S. J. Fredsti, "Software description and theory of operation: Real time operating
system for the Philips XAC3 Microprocessor and the Phytec phyCORE XAC3,"
OVRO, Caltech 25 Jan. 2002.

http://www.ovro.caltech.edu/ovrodocs/CANbus/OVRO_XAC3_RTOS_Theory_of_Operation.pdf

http://www.ovro.caltech.edu/ovrodocs/CANbus/OVRO_XAC3_Drivers_&_Common_Software_Theor
y_of_Operation.pdf

[4] S. J. Fredsti, "Software description and theory of operation for drivers, common
utilities and test monitor," OVRO, Caltech 28 Jan. 2002.

[5] http://www.tasking.com/products/XA/index.html

[6] http://www.ceibo.com/4/ds-xa.shtml

Revision: 1.0 Page 11 of 11

http://www.ovro.caltech.edu/ovrodocs/CANbus/CANbus_Message_ID_Protocol.pdf
http://www.ovro.caltech.edu/ovrodocs/CANbus/OVRO_XAC3_RTOS_Theory_of_Operation.pdf
http://www.ovro.caltech.edu/ovrodocs/CANbus/OVRO_XAC3_Drivers_&_Common_Software_Theory_of_Operation.pdf
http://www.ovro.caltech.edu/ovrodocs/CANbus/OVRO_XAC3_Drivers_&_Common_Software_Theory_of_Operation.pdf
http://www.tasking.com/products/XA/index.html
http://www.ceibo.com/4/ds-xa.shtml

	GeneriCAN: CAN Node Design for CARMA
	Abstract
	Introduction
	Hardware Description
	Overview
	Processor Module
	Serial Port
	CANbus Interface
	CAN bus
	Reset
	Timing

	Data and Address Lines
	Ports
	Timers
	Real-Time Clock
	Digital I/O
	Status LED’s
	Hardware LED’s
	Software LED’s

	One-Wire Bus and Devices
	SPI Devices
	Memory
	ADC’s and DAC’s
	Temperature Sensors
	UART

	Voltage Monitoring

	Software Design
	Overview
	Operating System
	opsys
	pacer
	errors
	vectors

	Drivers
	Bus Drivers
	UART
	CAN
	1-Wire
	SPI

	SPI Devices
	Other I/O

	Application Layer
	Application Code
	Pacer Tasks
	CAN Messages
	RAM/ROM

	Utility Code
	Conversions
	Tables
	Date/Time

	High-Level Software
	Documentation and Version Control
	Hardware
	Software

	Development Tools
	References
	caltech.edu
	Microsoft Word - CANbus implementation 5.doc

