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Abstract 
We present the basic design of hardware and software for a generic CAN node based 
on the experience at OVRO. The intention is not to present a single CAN node design 
to perform all functions, but rather to provide a template from which to develop 
hardware and software for specific applications. A certain minimum hardware 
functionality is provided, with a prescription for adding new capabilities. A kernel of 
software will be provided to implement core capability such as scheduling of tasks in 
a time-critical manner, driver software for various types of devices, and templates on 
which new projects can be based. 

Many CARMA-specific requirements are already implemented. These include: 
precision timing and time stamps; a CAN connector definition that includes Reset, 
Timing, and Power lines; a CAN address format standard; and fast and slow monitor 
package handling. 

Numerous different CAN nodes will be required for CARMA so it is important to 
maintain reliable control of code and documentation. No specific procedures are 
currently implemented, but these must be implemented as a CARMA-wide solution. 

1 Introduction 
Embedded processors communicating using the CAN protocol will be widely used in 
CARMA. All CAN nodes that are to be integrated into the CARMA system have to interact 
with the higher level software in a homogeneous way, accepting commands with standard 
addressing and formatting, and streaming back monitor information with a predefined format 
and timing. While nodes for different applications will require different hardware and software 
implementations, there will be a core of functions that are similar across virtually all the 
implementations. There will also be a pool of hardware and software fragments that can be 
used as a ‘mix-and-match’ resource for new designs 

In this document we outline a basic hardware design and core set of software based on 
developments at OVRO over the last two years. Modules, such as the COBRA downconverter 
controllers, have been implemented and successfully integrated into the OVRO control 
system. It is proposed that this ‘template’ design will be reviewed for general CARMA 
suitability and a core set of hardware and adopted for all new designs. Note that his does not 
imply that all CAN nodes are identical, but just that common functionality is uniformly 
implemented. 

A CAN node has an embedded microprocessor controlling one or many hardware functions of 
devices that are located close to the node. Each node should be recognized by the high-level 
system when it is plugged into an appropriate bus. Messages on a CANbus have headers that 
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identify devices and control priority. A standard for messaging has been adopted by OVRO 
[1]. The 29-bit Message ID allows the CAN node to be addressed either by API or Board Type 
and whether or not the Linux host should ignore the message. Message types (with several 
standard ones defined) and board or API type are also included in the ID. Data may be 
included in payloads of up to eight bytes as required. This standard appears equally suitable 
for CARMA use. 

CAN hardware node type and version information is stored in unique ID 1-Wire® devices, 
and the API designation visible to the high-level system type is embedded in the software. A 
single hardware design may be programmed with several API types, and a single API type 
may be implemented on different hardware implementations (mainly hardware revisions that 
do not change the functionality presented to the high-level software). 

2 Hardware Description 

2.1 Overview 
The CAN hardware is based on a commercial module (a phyCORE “single board computer”) 
that plugs into a host board designed to implement whatever hardware functions are required 
for a given application. While each application will probably require a different board design, 
there is a core of functionality that should be implemented on virtually all boards. This ensures 
some uniformity of parts and allows certain software modules to be re-used with no changes 
other than defining constant values. Circuit diagrams are available in OrCAD format for 
inclusion in future designs. 

Because of the limited number of I/O ports on the phyCORE module, significant additional 
circuitry is required for attaching many peripheral devices. This should be accomplished with 
the same method of decoding for all applications so that the same software drivers can be used 
(differences in address for the same device on different boards can be accommodated by using 
a #define for the address in the project header). A digital I/O scheme is included in this 
design for this purpose. 

The functions that have been implemented to date are described below, and the list will 
continue to expand. 

2.2 Processor Module 
The Phytec phyCORE XAC3 module [2] uses the PhilipsXAC3 microprocessor with in-built 
CAN communications. The module has two sets of pins that allow it to be plugged into the 
board that will hold all the application-specific circuitry. In addition to the processor the 
module includes: memory; address decoder; RS-233, RS-485, and CAN drivers; a real-time 
clock (RTC). The XAC3 chip is socketed, so it can be replaced by an in-circuit emulator (ICE) 
for debugging in real time. 

While the phyCORE module has some shortcomings, particularly in the number of digital I/O 
lines, it has most of the functionality required for CARMA applications. The module board 
has components on both sides, and components may be placed underneath it on the host board, 
yielding a high component density in a 55 mm × 47 mm area. 

2.3 Serial Port 
The RS-232 serial port is available on a D-connector and is the primary means of downloading 
programs and debugging software. 
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2.4 CANbus Interface 
CARMA ICD 6000 specifies the physical and electrical characteristics of the CANbus 
interface. In essence it specifies an RJ-45 connector that carries the CANbus signals, a Reset 
pair, a Timing pair and a +12 V Supply that can be used to power CAN nodes that have modest 
power requirements. 

2.4.1 CAN bus 
Drivers for the CANbus are incorporated on the phyCORE module. The high-speed bus (1 
Mb/s) is implemented. Typically, a CAN node has two RJ-45 connectors so that nodes may be 
easily chained together, with the CAN drivers connected in a ‘T’. Restrictions on the length of 
the ‘T’ are given in ICD 6000 and are easily met. 

2.4.2 Reset 
A remote reset is implemented that can be used to reset the microprocessor and any other 
hardware on the board. For noise immunity it is implemented as an RS-485 signal on a twisted 
pair as described in ICD 6000. 

2.4.3 Timing 
Timing signals are brought on to the board on the CAN connector. The timing signal (e.g., 
1 pps) must be the same for all nodes on a given bus, but different nets can have different 
timing signals as required. 

2.5 Data and Address Lines 
19 address lines and 16 data lines are available from the phyCORE module. Some of the 
address lines are used for digital I/O (see below). 

2.6 Ports 
Eleven ports are available from the phyCORE module. Almost all of these are allocated in the 
template design as follows: 

Port Function 
1 SPI 
2 SPI 
3 SPI 
4 SPI 
5 1-Wire Bus 
6 UART (RS-232/RS-485) 
7 UART (RS-232/RS-485) 
8 External Interrupt, Timing Reference 
9 External Interrupt 

10 Unallocated 
11 Unallocated 

 

2.7 Timers 
There are three timers. One is used for the pacer (see below) and one for the UART, while the 
third one may be used as needed. 
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2.8 Real-Time Clock 
Accuracy of the real time clock is not sufficient for most CARMA time-critical tasks. These 
are handled with a timer and the operating system software. Non-critical applications may use 
the RTC as appropriate. 

2.9 Digital I/O 
Potentially there are up 138 read and 138 write bits. Typically 8 × 8-bits are implemented. Of 
these, the first byte is allocated for software LED’s, and one byte for chip select addressing. 
Both are described below. 

2.10 Status LED’s 
Several LED’s are used, three directly connected to the hardware and the remainder under 
software control. At least five of those under software control should have the same functions 
for all nodes. The remainder may be used for application-specific purposes, or not included on 
the board. 

2.10.1 Hardware LED’s 
These are connected directly to the relevant hardware: 

LED Function Color 
1 Reset Red 
2 Timing Yellow 
3 5 V present Green 

 

2.10.2 Software LED’s 
Software LED’s are connected to 1 byte of the digital outputs at. Their standard functions are: 

LED Function Color 
1 Pacer (5 Hz) Green 
2 CAN Error Yellow 
3 CAN Tx Yellow 
4 CAN Rx Yellow 
5 General Error Red 
6 Unallocated – 
7 Unallocated – 
8 Unallocated – 

 

 

2.11 One-Wire Bus and Devices 
A general 1-Wire bus is implemented. All boards will have at least one 1-Wire device, a 
DS2430A, that is used to identify the board type and serial number in a standard format [1]. 
Many boards will have a second 1-Wire device that provides the location of the board. The 
second device may, for example, be on a backplane that the board is plugged into to indicate 
which slot it is inserted in. This allows the software and hardware to be completely generic for 
a given board type but allow the high-level software to distinguish among different units 
without resorting to board jumpers or software constants. 

Other devices may be connected to the bus for temperature monitoring, remote ADC’s, etc. 
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2.12 SPI Devices 
Many devices use the Serial Peripheral Interface protocol. Although the hardware 
specification is the same for all, there are different implementations of the timing that are 
handled in the software driver. Multiple devices may be connected to the SPI bus. There are 
two different ways that can be used to address different devices. The simplest is to connect all 
the SPI devices to the same SPI bus and to select the device using a chip select (CS) line. The 
template design uses two bytes from the digital I/O, for a total of 16 devices. The second 
method is applicable only to certain devices that may be chained together. The data are 
clocked through all the devices and then strobed into them all at the same time. 

Some of the devices that have been incorporated to date are as follows: 

2.12.1 Memory 
An 8k × 8 EEPROM (Atmel AT25640) is implemented for storing data. Although re-writable 
ROM is available on the phyCORE module, having persistent memory on the application 
board keeps the data with the board even if the phyCORE module needs to be changed. 

2.12.2 ADC’s and DAC’s 
The following analog I/O devices have been implemented: 

Device Function Comments 
AD7707 16-bit, 3-channel ADC  

MAX1270 12-bit, 8-channel ADC  
LTC1658 14-bit DAC  
LTC1668 16-bit DAC  
MAX3110 SPI UART U. Chicago 
AD7676 16-bit ADC U.C. Berkeley 

ADG528F 8-ch MUX U.C. Berkeley 
AD7841 14-bit DAC U.C. Berkeley 

 

2.12.3 Temperature Sensors 
An AD7814 temperature sensor has been implemented, and is useful for monitoring the 
temperature of the module. 

2.12.4 UART 
A MAX3110 SPI UART (separate from the program/debug UART) that is required for 
controlling Zaber linear actuators for Gunn tuning and attenuator setting via an RS-232 control 
is being implemented by U. Chicago. 

2.13 Voltage Monitoring 
All power supply voltages on the board are monitored via the MAX1270 ADC. 

3 Software Design 

3.1 Overview 
There is no standard operating system provided for the phyCORE module, so one has been 
developed for OVRO applications that should be suitable for CARMA use. Most of the 
programming is done in C, with some time-critical sections in Assembly Language. Code can 
be divided into three sections: the core operating system, drivers, and the application code. 
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The first should be regarded as ‘read-only’ and should be regarded as uniform across all 
applications. Releases will be as a package and have version number information embedded. 

The core of the operating system is contained in four files, opsys.c, pacer.c, errors.c, 
and canerrors.c. Each device will have a driver in a separate file <name>dvr.c. These are 
all supplied as source code and contain a header file, project.h, that can contain defines for 
values to use in the system software, such as names for the status LED’s. 

Each implementation of a CAN node will have code specifically written for it. Most 
applications will require code to communicate with the serial port for debugging purposes. 
Although the commands and responses will vary greatly from one application to another the 
basic functionality will be similar. A code template, monitor.c, is therefore provided with 
some skeleton code that can be extended as appropriate. Other files will contain functions that 
can be sent to the task dispatcher for executing specific tasks. 

Any given application will be built with all the standard operating system code, the drivers for 
the devices used, and the application code. The monitor code may be included or excluded 
from the final build, depending on speed and memory restrictions. 

Most of the functionality is described in detail in [3, 4] and a summary is given below. 

3.2 Operating System 
3.2.1 opsys 
opsys.c contains the core of the operating system for the Phytec module. It is responsible 
for managing the task queue and scheduling and dispatching tasks to the pacer. Input on the 
debugging serial port is detected and queued. 

3.2.2 pacer 
Functions in pacer.c take care of maintaining absolute time and timing of all tasks. They 
respond to the timer interrupt to start tasks on appropriate time boundaries. 

3.2.3 errors 
A general error handler with error logging is implemented in errors.c. 

3.2.4 vectors 
Definitions of the interrupt vectors used by the software, and hardware (timers, CANbus, 
UART, and SPI) are contained in vectors.c. 

3.3 Drivers 
Several drivers have already been implemented and more are in the process of being added. 
These include: 

3.3.1 Bus Drivers 

3.3.1.1 UART 
uartdvr.c handles the I/O on the serial port, providing a FIFO buffer for data. It also allows 
CAN messages to be echoed to the serial port. 

3.3.1.2 CAN 
candvrs.c deals with receiving and transmitting CAN messages and handling errors on the 
CANbus. Only messages destined for the particular CAN node are accepted and put into a 
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buffer. A function is provided to generate a CAN address that is compliant with the OVRO-
defined protocol. 

3.3.1.3 1-Wire 
The 1-Wire driver in onewiredvr.c will search for all devices on the 1-Wire bus. In 
particular it will identify the devices that hold the CAN node type and serial number, and the 
CAN node location. 

3.3.1.4 SPI 
Various possible hardware timing sequences for the SPI bus are coded in spidvr.c, with 
sections in Assembly Language to speed up communications. 

3.3.2 SPI Devices 
SPI drivers have been written for the following devices: 

Device Driver File Function 
AD7707 ad7707dvr.c 16-bit, 3-channel ADC 
LTC1658 dacdvrs.c 14-bit DAC 
LTC1668 dacdvrs.c 16-bit DAC 
AT25640 eeromdrv.c 8k × 8-bit EEROM 
MAX1270 max1270dvr.c 12-bit, 8-channel ADC 

 
3.3.3 Other I/O 
Routines for turning LED’s on and off at specified intervals, internal RAM checks and various 
other routines are contained in otherio.c. 

3.4 Application Layer 
3.4.1 Application Code 
The top level application code, <projectname>.c, contains the main(void) entry point to 
for the code. It supplies initialization routines, state machines, unit conversions, hardware 
control algorithms, etc. 

3.4.2 Pacer Tasks 
Any tasks that have to be dispatched to the pacer are defined in pacertasks.c. 

3.4.3 CAN Messages 
Many CAN messages will be the same for all CARMA nodes, and most nodes will have a set 
particular to the application. All messages, standard and application-specific, are coded in the 
file canmsgs.c. Code in this file is responsible for interpreting incoming CAN messages and 
activating the appropriate code in response. It also assembles and sends out the monitor 
packages. An important task of this code is also to take care of time synchronization requested 
by the CAN messages. 

3.4.4 RAM/ROM 
ramromdefs.c contains declarations of RAM and I/O address spaces. 
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3.5 Utility Code 
3.5.1 Conversions 
Sets of routines in genrtn.c handle conversions between different data representations 
(bytes, BCD, strings, etc.). There are also several utility functions for operations on strings. 

3.5.2 Tables 
At present all table operations are coded in the applications where they are used. In future a set 
of standard functions could be extracted into a single file to be compiled directly or for cut-
and-paste into other source code. 

3.5.3 Date/Time 
Currently the software provides both coarse and fine module time control.  Coarse time 
control guarantees better than 10 ms resolution while fine control guarantees better than 
100 µs resolution.  The fine control uses the Timing signal available as interrupt (0).  The 
coarse timing uses time stamps sent from the system host which is synchronized to NTP. 

4 High-Level Software 
Although this document is primarily intended to cover the CAN node itself, it is useful to note 
that there has been concurrent development of high-level software for the CARMA-standard 
cPCI crate running Linux with a Janz CANbus card. 

5 Documentation and Version Control 

5.1 Hardware 
At some point a Web accessible document depository will be created, but this is not yet 
available. 

5.2 Software 
No standard documentation or version control has been implemented, but these will probably 
use Doxygen and CVS. 

6 Development Tools 
Tasking’s Embeded Development Environment and cross-compilers for C and Assembly 
Language [5] are currently used at all the CARMA sites. OVRO also has an in-circuit 
emulator (Ceibo EB-XA/EB-XA-C3, [6]). For testing hardware and algorithms there is an in-
house board that plugs into the phyCORE socket on the application board controlled by a PC 
using Visual Basic or LabVIEW through a DIO24 digital I/O card. 
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