
CARMA Memorandum Series #29

IF Module Software Documentation

A. D. Bolatto

Radio Astronomy Lab, University of California at Berkeley

August 9, 2004

ABSTRACT

This is a functional description of the IF module, explaining what it measures

and controls, and how it controls it. The overall structure of the software as well

as the details of the algorithms used are discussed in detail, so that programers

and users not familiar with the embedded XAC code understand its features

and nuances. This document also contains information useful for diagnosing

hardware/software problems with the module, including a detailed explanation

of the error codes and their possible causes.



– 2 –

Change Record

Revision Date Author Sections/Pages Affected

Remarks

1.0 2004-July-27 A. Bolatto 1-19

Initial draft discussing release 1.3.1.B of the software. Comments are welcome.



– 3 –

1. Overview

The CARMA IF module consists of a variable gain microwave amplifier (the PAM, a name

that comes from its use in the Allen Telescope Array as the post–amplifier module) inte-

grated with a DAQcore monitor and control module such as that described in CARMA

memorandum #13. The IF module is connected to the laser module (the OTX) which sends

the IF over optical fiber back to the correlator in the lab. It is also connected to the IF

switch, which selects among 4 possible inputs (i.e., 4 receivers). The role of the IF module

is to provide up to 50 dB of gain from ∼ 300 MHz to ∼ 8 GHz, to control the gain of the

PAM over a range of 63 dB using digital attenuators, to measure the output RF power of

the PAM, to monitor the physical temperature of the PAM, the temperature regulation of

the laser transmitter, and the output optical power, and to control the IF switch. It also

has a spare connector that can be used for future expansion, in particular the control and

monitor of a chopping tertiary for single–dish total power measurements.

The IF module communicates with the rest of the system using CANbus. The command

and control interface for the IF module is defined in API # 224. This interface defines the

automatic blanking frame reporting packets, and allows the user to access all the functionality

of the module, including, for example, to set its output power to a particular value. Most of

the API functionality is also accessible using the serial port RS232 connection and a terminal

program in a PC.

This document is a functional description of the IF module focused on how to use it. It

does not include a detailed description of the hardware except when it is pertinent for

understanding how the software works. The purpose of this document is to serve as a

guide for the higher level programs that use the module, and to help whoever is trying to

debug/modify the embedded XAC software.

2. Software Structure

The IF module does not use the ORTOS software developed at OVRO, but a combination of

code developed by me, and a subset of CANbus communication libraries extracted from the

ORTOS system by David McMahon. The software is considerably more compact than the

standard ORTOS, and is documented using Doxygen. The main file contains the code in the

body of the program, which takes care of the one–time module initialization and the main

loop which processes incoming CANbus/serial messages and outputs the blanking/monitor

and fast frames. The CANbus communication libraries derived from ORTOS are found in

the candvr, canmsgs, errors, genrtn, and interrupt files. The daqio file contains the



– 4 –

Fig. 1.— DAQcore side of the IF module, showing the Phycore XAC module and the

connector and cable arrangement.



– 5 –

part of the code relevant to the DAQcore module itself, such as the A/D and DIO libraries.

The messages file handles the higher level I/O and the parsing of the RS232 interface. The

pamdrv file contains the libraries that deal with the PAM hardware, most notably setting

the attenuators. The 1wireiddrv, spi, timerdrv, and uart files have the libraries that deal

with DS2401 1-wire ID devices, SPI communications (for the onboard EEPROM), and the

internal XAC timers and UART. Finally, tasks has the routines that implement each of the

API commands and responses, as well as the error logging and the proper initialization of

most variables.

A key feature of the software in the IF module is that there is a constant background digi-

talization of the 4 analog input channels (RF power, PAM temperature, OTX temperature

regulation, and OTX power, connected respectively to channels 0 to 3 of the 16–bit/8–

channel A/D in the DAQcore) at a rate of 200 Hz (the RF power detector circuit time

constant is ∼ 20 ms, so this is faster than Nyquist sampling). Every 5 ms the XAC is

interrupted and the data acquisition routine samples channels 0 to 3. These samples are

stored in a ring-type buffer, where they are used by the different routines. For example, the

blanking frames report the averages of the last 100 samples of the different channels, while

the query RF power command (message ID 0x105 in the API) reports the median of the

last 3 samples. This way, when a fast sampling command is issued, the mode of operation

of the module does not change at all. The only difference is that the individual samples

are reported in the corresponding fast sampling packets defined in the API. The interrupt

routine also increments a counter (the tick count), providing a clock for the system.

The overall architecture of the software is as follows: main.c contains the initialization

sequence and the main loop, which executes forever. At the same time the data acquisition

interrupt is active in the background, waking up every 5 ms, acquiring the data and updating

the clock ticks. When the main loop determines that the tick count is close to a multiple of

100 (i.e., an integer number of 0.5 s periods since the last set time command was received) it

enters the section that takes care of the blanking, slow monitor, and fast sampling reporting.

Otherwise, it checks to see if there are any CANbus messages in the queue or if a keystroke

has appeared in the RS232 UART. If there are messages, it processes them with the code

found in tasks.c. Otherwise it keeps looping.



– 6 –

3. User Interface

3.1. LEDs and pushbuttons

The IF module is equiped with two pushbuttons and several LEDs, which are labeled in the

frontpanel (Fig. 2). The buttons have the usual functions of RESET and BOOT, familiar

to anybody who has worked with the Phytec XAC module. The LEDs are divided in three

groups: green power LEDs, which should always be on, red LEDs indicating the BOOT

or RESET lines are active (either because someone is pushing the button, or because the

RESET distributed with the CANbus cable is pulled down), and yellow LEDs. One of the

yellow LEDs, labeled 2pps, indicates the operation of the DAQcore hardware timer and will

always be off in the current version of the software. The other 3 yellow LEDs, labeled DO12,

DO13, and DO14 (connected to digital output bits 12, 13, and 14 of the DAQcore) have the

following meaning: DO12 is turned on while the module is receiving a message, either from

the CANbus or the RS232 interfaces, otherwise is off. DO13 is turned on while the module

is transmitting a message through the CANbus or RS232, otherwise is off. DO14 has a dual

purpose: a (mostly) solid light is used to indicate an error has been logged (clearing the

error log will turn off the LED). However, whatever the status of DO14 is it should blink

twice a second while the blanking frame code is executing.

3.2. RS232 terminal

The serial port communications are programmed at 38400 bps, no parity, 8 data bits, and 1

stop bit. Most API commands can be issued through the RS232, and the blanking frame/slow

monitor packets are echoed there in a “human friendly” format. The automatic echo, which

Fig. 2.— IF module front pannel detail, showing LEDs and pushbuttons.



– 7 –

may be annoying, can be toggled on and off by sending an ’s’ character. Sending a ’z’

character allows the user to dump a range of XAC memory addresses for software develop-

ment/debugging purposes.

To issue a command, the user has to send an ’x’ character to grab the attention of the

software (which sometimes requires more than one try). If the user has been successful

the IF module will reply with a CODE: prompt. The module stops reporting during RS232

input, although the background samplig proceeds normally. The input process in the RS232

parallels the definition of the messages in the API: in fact the program just assembles an 8-

byte packet with the information provided and sends it to the main “packet parsing” routine

which is used for CANbus communications too. The user reply to the CODE prompt should

be the hexadecimal packet ID as defined in the API (e.g., 100 to select a band using the IF

switch). After entering the command code, the module will reply with a request for the rest

of the parameters that apply to that particular command using the nomenclature defined

in the API (in the example above, it will reply with IFSWIPOS= and expect an integer from

1 to 4). Commands that require security payloads (e.g., command 0x000 for module reset)

expect them in hexadecimal notation, as they are specified in the API. There is a built-in

timeout of a few seconds that is reset every time a character is sent over the serial link — the

effect of timing out is typically that that input is set to zero, so if one times out at the CODE

prompt the module interprets it as a RESET command and requests the security payload

(do not despair, it will not successfully reset unless the payload is entered correctly! Just

press ENTER 8 times). This “feature” is midly annoying and I plan to correct it in future

versions.

There are two negative command codes that the current software will accept which do not

belong to the API and are used only for debugging purposes. Code −1 will set the flag

that causes the main loop to do a “blanking frame” (in the current version of the software

this does not provoke a blanking frame, but it used to and may again in the future). Code

−2 prints the current value of the internal module tick clock updated by the data acquision

interrupt (a 2-byte integer that shows the data acquisition is running).

4. Module Initialization

During the power cycle startup, or recovering after a hardware/software RESET, the module

goes through an initialization process. Very early in this process the serial port communi-

cations are initialized, and a wealth of information is echoed throught the RS232. Once the

module reports its software version, it sets the PAM internal attenuators to their maximum

(63.0 dB), resets the IF switch position to select band 1, and reports the module ID as it has



– 8 –

been stored in EEPROM. There is no attempt to check for the validity of the ID number;

if the module has not been some time in the past initialized using an assign ID command

(message ID 0x3FE in the API) it will report a bogus ID.

Next in the initialization sequence, the module attempts to read in the RF power sensor

calibration from its EEPROM, which consists of a table of sensor voltage–RF power pairs

of length ≤ 16. The calibration is stored in EEPROM together with a checksum to help the

software determine its validity. If the software finds it to be valid, the table of voltage–power

pairs is echoed through the serial port. Otherwise the module reports INVALID RF POWER

SENSOR CALIBRATION and uses a default 1,000 mW/V factor. This default factor is not

accurate. In fact, it is blatantly wrong to emphasize the fact that the calibration is invalid.

In the final part of the initialization the software activates the background sampling, waits

for 3 samples to be acquired, and uses the median of channel 0 (the RF total power) to

estimate the offset in the A/D input amplifier (typically only a few counts, where 1 count

= 76 µV). Of course, this works well only because the attenuation is set to maximum and

the module is (hopefully) not receiving some overwhelmingly strong signal at its input. The

offset found is also reported in the RS232 terminal.

5. Blanking Frame Activity

The first time the module turns on it will wait for 100± 1 ticks of the internal clock (500± 5

ms) to send the first set of blanking and monitor frames. This set will have the “initialization

request” flag turned on (byte 3 of the slow monitor packet # 1), which will be turned off

afterwards. The only means of synchronization of the module are the SET TIME commands

(message ID 0x001) issued periodically by the antenna computer: when the module receives

one it will reset the internal tick count and set the module time according to the contents

of the packet. The assumption built into the software is that these packets will only be sent

on blanking frame edges, and the module uses that fact to synchronize with the rest of the

system. Essentially, it sends blanking frames whenever the remainder of the internal tick

count divided by 100 is ±1, and it sends slow monitor packets every 10 blanking frames. The

other built–in assumption is that the antenna computer will issue SET TIME commands at

least once every 5 minutes (the 2–byte counter allows the module to stay synchronized for

327 seconds since the last SET TIME).

After the blanking/monitor frames are sent the software checks if fast sampling is enabled,

and if it is it proceeds to assemble and send the corresponding packets. For each fast-

sampled channel there will be 50 packets sent in rapid succession inmediately after the



– 9 –

blanking/monitor frames.

6. Algorithms

6.1. Fast Sampling

As discussed in §2, the digitalization always proceeds in the background at the fast sampling

rate. The START FAST SAMPLING command only sets a flag telling the software to report

the individual samples (rather than only their average) in the next blanking frame edge. As

a consequence, this module will always report 100 samples for the entire blanking frame

interval, independently of precisely when the fast sampling command was issued. If this is

a problem for the software dealing with the piecing together of the fast sampling reports, it

could be changed.

6.2. Set Band

The SET BAND command accepts as a parameter an integer from 1 to 4. Numbers outside

this range trigger a BAND ORANGE error. If the current switch position, as sensed by digital

inputs DI0..DI3, corresponds to the commanded position, no action is taken. Otherwise the

blanking frame switch status is set to SWITCH CHANGING, the switch is commanded to the

new position, the module waits for 20 ms for the relays to close, then senses the status of the

switch in DI0..DI3. If the sensed position does not agree with the commanded position, a

BAND STUCK error is logged, and the switch status in the following blanking frame is changed

to SWITCH STUCK.

In the current implementation there is the risk that the module will miss the blanking frame

reporting during the 20 ms wait, if the switch is commanded to move very close to a blanking

frame edge. Since changing bands is not done that frequently, and not done at all in the

middle of integrations, this is probably not a big problem. It could be fixed by increasing the

time tolerance of the blanking frame reporting. Other fixes are possible, but considerably

more complicated.

6.3. Set PAM Attenuation

This command accepts as a parameter a floating point target attenuation in dB, from 0.0

to 63.0. If the target attenuation is within 0.3 dB of the current attenuation, the command



– 10 –

is ignored and no action is taken (the granularity of the attenuator settings is nominally 0.5

dB). If the target attenuation is greater than 63.0 dB, or less than 0.0 dB, it is reset to the

corresponding limit and a ATTEN UFLOW or ATTEN OFLOW error is logged, but the command

proceeds. The target attenuation is them rounded to the nearest 0.5 dB step, and equally

divided among the input and output attenuators of the PAM (if the number is not even

the extra 0.5 dB of attentuation will be applied in the output attenuator). At the time the

attenuators are set, the blanking frame pam status is set to PAM CHANGING.

6.4. Set Input and Output Attenuators Independently

This command accepts two floating point numbers between 0.0 and 31.5, representing the

attenuation in dB. This command proceeds very much as the previous command, logging

similar errors and setting the blanking frame PAM status is set to PAM CHANGING. The only

procedural difference is that the command is never ignored, and the attenuators are always

set, without regard for their current setting.

6.5. Set PAM Level

The SET LEVEL command accepts one floating point parameter, the target output power

level in mW. The first action taken is to measure the current RF power level by using the

median of the last 3 samples in the data acquisition buffer. If the measured level is within

0.3 dB of the target level, no further action is taken. Otherwise, the module broadcasts

a PAM status packet (message ID 0x130 in the API) with the content PAM CHANGING, and

it proceeds to iterate to obtain the requested output level. The iterations proceed in the

following manner: if the current output power is zero, it will decrease the attenuation until

an RF power greater than zero is measured. If this never happens, a LEVEL ORANGE error is

logged and the PAM blanking frame status is set to PAM IFLOW. Otherwise the routine uses

the measured RF power value at the current attenuator setting to forecast the attenuator

setting necessary to achieve the required output power, and iterates repeating the process

until the measured output power is within the 0.3 dB tolerance. Currently the maximum

number of iterations allowed is 5.

At the end of the procedure a new PAM status packet is broadcast. If the iterations were

successful and the measured output power is within 0.3 dB of the target power, the content of

the message is PAM IFVALID. If the set level procedure does not reach the target level within

the tolerance in the maximum number of iterations, a LEVEL ORANGE error is logged and



– 11 –

a pam status message PAM IFLOW or PAM IFHIGH is broadcast as the PAM status message.

Because the attenuators have been changed, the pam status reported in the next blanking

frame will always be PAM CHANGING. The step by step process is echoed to the RS232 terminal

to help the user debug problems.

In any case, because the set level command takes a while to execute, there is the possibility

that the module will miss the blanking frame edge and not report (as in the set band

command). The cures for this problem are limited: every measurement of the RF power

takes ∼ 15 − 20 ms (it uses 3 samples) and there may be up to 10 of those steps plus the

software overhead and the overhead in echoing the intermediate steps to the RS232. The

worst case execution time is probably ∼ 350 ms (it could be cut to ∼ 50% by reducing the

amount of RS232 output and doing other minor modifications), which is the better part of

a blanking interval.

Since the RF calibration tables for the detector were added to the software, I have seen that

sometimes SET LEVEL fails to converge when it is started with a large attenuation in the

PAM. The causes for this behavior are not clear, but it may be related to the fact that the

detector calibration shows it is nonlinear. In any case, in my experience, if the set level

command is reissued the procedure succeeds almost immediately, which suggests that the

higher level software should just try again if set level fails to converge at any given time.

6.6. Query RF Power

This command simply waits for 3 new samples to be acquired, and returns the median (in

mW) in a message with ID 0x142. All the RF power measurements (e.g., this command

or the measurements done for setting the level) use a linear interpolation on the calibration

table (e.g., Fig. 3) to convert the voltage measured by the A/D in channel 0 to the output

power.

6.7. Calibration Table Upload

A new RF detector calibration table can be uploaded at any time. Once the upload is

completed it will be automatically burned into the EEPROM, replacing the old calibration

table. The upload procedure is separated in two parts: to initiate the upload, the module

has to receive a message with ID 0x3F9, containing a 7–byte security payload plus a 1–byte

table length, between 2 and 16. After that the module will accept packets with ID 0x3FA

containing the individual voltage–power (floating point V–mW) elements in the table. Once



– 12 –

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Output power (mW)

R
ea

do
ut

 d
et

ec
to

r v
ol

ta
ge

 (V
)

Fig. 3.— Calibration curve for the IF power detector installed in PAM #12.



– 13 –

the module receives a packet count equal to the table length it proceeds to compute a

checksum (using the 1–wire DS2401 algorithm) and burn the table into EEPROM, including

the checksum. When the EEPROM reports that the burn has finished, the values are read

and compared to those in the XAC memory to check their accuracy. If discrepancies are

fund, the module logs an UPLOAD BURN error. The upload can be restarted at any moment

before the EEPROM burning stage. If a packet with ID 0x3FA is received when the upload

process is not active, a UPLOAD NOACTIVE error will be logged.

I have seen the module hang occassionally at the end of the EEPROM burning process. This

is apparently caused by the onboard ATMEL EEPROM failing to set a bit high in the SPI

interface. Every time this has happened it turns out that, after reset, the table was correctly

burn in memory. In future releases I may try to see if this problem is causes by a timing

mistake in the SPI interface, or to include a timeout to prevent the hang up.

6.8. ID Request

This module replies to an ID request (message ID 0x3FC) with module type 224, API number

224, module serial number as assigned by the assign ID command (currently modules 1–9

belong to the SZA, and 10–15 to the OVRO antennas, for example), and dongle location

1. In the future, the donge location (which indicates polarization, 1 or 2), will be obtained

through the power supply connection. At the time of this development those modules were

not ready, and since we currently have only one polarization the dongle location was fixed

in the program.

6.9. Status Words

Three status words are reported in the blanking frame packets, in bytes 4, 5, and 6 of message

ID 0x111. They correspond to the status of the PAM, the IF switch, and the OTX. The

actual numerical values of the different states are documented in the API # 224 document.

6.9.1. PAM Status

The PAM status byte is put together using two pieces of information: the IF output power

status, and the physical temperature of the PAM, both averaged during the last 0.5 sec-

onds. The reported PAM status is determined in the following manner: if the attenuators

have been changed during the last 0.5 seconds, The IF output power status reported will be



– 14 –

PAM CHANGING. Otherwise, the module will determine if the output power was within range

(0 to +5 dBm, or 1 to 3.2 mW), and report PAM IFVALID, PAM IFLOW, or PAM IFHIGH accord-

ingly. Next, the software will check that the PAM temperature averaged over the blanking

frame interval was between 293.0 and 303.0 K, and bitwise OR the PAM TORANGE value ac-

cordingly. Note that band changes are not reflected on the PAM status byte, although the

power readings will be meaningless if the band was changed during the last blanking frame

interval.

6.9.2. Switch Status

If a successful set band command was issued during the last blanking frame interval, the

reported status will be SWITCH CHANGING. If the switch was determined to be stuck by the set

band command (i.e., the sensed position did not correspond to the commanded position) the

status will be SWITCH STUCK and remain SWITCH STUCK until a successful set band command

is issued. Otherwise, at every blanking frame edge the switch position is sensed and reported

in the switch status word as SWITCH BAND1..4.

6.9.3. OTX Status

As in the PAM status, the optical transmiter status is broken into two parts, reflecting

the state of the output optical power and the temperature regulation. If the laser power

output readout averaged over the last 0.5 seconds is outside the 0.3 to 1.3 V range, a

LASER OPTORANGE value will be reported. Similarly, if the laser regulation error output

average voltage falls outside the range 0.0 to 1.0 V a LASER NOREGUL value will be reported.

These values are bitwise ORed to determine the reported OTX status word.

7. Error Handling and Failure Diagnostics

Tables 1 and 2 show the error codes reported by the module, the conditions that cause them,

the actions taken by the software, the parameters reported in the error log, and the likely

causes of the hardware errors. The philosophy has been to log an error when something

appears wrong with the hardware in the module (e.g., ID NOTPRESENT signaling that the

laser 1–wire ID dongle is not plugged in), or when there appears to be a human error in the

use of the interface (e.g., UNKNOWN CODE signaling a packet with an unrecognized ID, not in

the API). A failure to meet a status check (e.g., the PAM physical temperature is above a



– 15 –

threshold) is not an error, and is not internally logged (only reported in the blanking frames).

As an aid to the used, byte 7 of the second blanking frame packet contains a count of the

errors that were logged during the last blanking frame. Some of the errors occurr only when

a command is issued and fails to execute properly (e.g., LEVEL ORANGE), while others occur

every time a check is performed, which may be every blanking period (e.g., ID NOTPRESENT).

The error log is a ring queue of length 64, therefore the 65th error will overwrite the first

error record. It is the responsibility of the higher level software in the antenna computer to

keep up with the logging of errors.

8. To Be (or Not to Be) Done

Two of the API commands are not implemented: the CANbus program download command

(message ID 0x3FD), for which the downloader/uploader code was not ready a the time

of this release, and the query attenuation vs. frequency command (message ID 0x104),

which I do not plan to implement. The reply to the latter command was going to be the

module gain vs. frequency as measured in the lab for the current attenuator settings. The

practical problem is that the gain curves (e.g., Fig. 4) contain many features that need to

be sampled at high frequency resolution for spectral line observations (Fig. 5), and given

that there are 128 possible attenuator settings the amount of information is such that it

cannot be easily contained in the module (we are talking about 1.6 MB approximately).

This information should live further upstream, possibly close to the correlator where it will

be used for passband correction. The passbands were measured in the lab at Berkeley before

sending out the modules.



– 16 –

Table 1: SOFT Error Codes, Conditions, and Actions

Error code Value Condition and action

BAND ORANGE 1 A set band command was received with a band parameter

outside the 1..4 range. No action was taken. The

requested band is reported.

ATTEN UFLOW 2 An attenuation command was received requesting less than 0.0 dB.

The requested value was set to 0.0 and the set attenuation

process continued. The requested attenuation is reported

ATTEN OFLOW 3 An attenuation command was received requesting > 63.0 dB

for the PAM, or more than 31.5 dB for any individual

attenuator. Attenuation was set to maximum allowed and

process continued. The requested attenuation is reported.

LEVEL ORANGE 4 Set level command failed to complete in the allowed number

of iterations, as measured output power is not within 0.3 dB

of request. No action is taken. Measured power is reported.

FASTITEM ORANGE 5 A start fast sampling command was received requesting a

fast sampling item outside the 0..3 range.

No action is taken. The requested item is reported.

UPLOAD NOACTIVE 7 An orphan RF power detector calibration packet was received,

without a start upload command issued first. No action is

taken. The reported parameter is meaningless.

UNKNOWN CODE 8 A packet with an unknown ID (one not in the API) was

received. No action is taken. The packet ID is reported.

CALTABLE LONG 9 The start upload command specified a calibration table

length that is outside the range 2..16. No action is taken.

The requested length is reported.

CALTABLE NOTFOUND 10 No valid power sensor calibration found at boot time in EEPROM.

The default calibration of 1000 mW/V will be used (i.e., the

RF power detector readout will be reported in mV. The reported

parameter is meaningless.



– 17 –

Table 2: HARD Error Codes, Conditions, Actions, and Likely Causes

Error code Value Condition and action

BAND STUCK 129 A set band command failed with the sensed IF switch position

different from the commanded position. The switch status word

will set to SWITCH STUCK until a successful set band

command is issued. The reported parameter is the 4-bit nibble

read in as the switch position (1’s for open relays, 0’s for

closed relays).

The switch is unplugged, or the hardware is malfunctioning.

ID WRONGCLASS 130 The laser ID 1–wire ID is connected but appears to have the

wrong family signature. No action is taken. The reported

parameter is meaningless.

The DS2401 1–wire ID IC is malfunctioning or its readout

is noisy.

ID WRONGCRC 131 The CRC checksum of the laser ID failed. No action is taken.

The reported parameter is meaningless.

The DS2401 1–wire ID IC is malfunctioning or its readout

is noisy.

ID NOTPRESENT 132 The DS2401 1–wire ID is not connected (no presence pulse

detected). No action is taken. The reported parameter is

meaningless.

The OTX is unplugged, the wiring is flaky, or the DS2401

IC is malfunctioning.

EEPROM FAILURE 133 In an assign module ID command, the number read from the

EEPROM after the burn is not the assigned ID. No action is

taken. The ID read from EEPROM is reported.

The ATMEL EEPROM onboard the Phycore is malfunctioning.

UPLOAD BURN 134 At the end of a calibration table upload, the table read from

the EEPROM failed the check. The calibration table is used, but

it will be lost after a reset or power cycle. The parameter

is the number of differences found.

The ATMEL EEPROM onboard the Phycore is malfunctioning.



– 18 –

0 2 4 6 8 10 12
−20

−10

0

10

20

30

40

50

Frequency (GHz)

G
ai

n 
(d

B
)

0 2 4 6 8 10 12
20

40

60

80

100

120

140

160

180

200

Frequency (GHz)

P
ha

se
 (d

eg
)

Fig. 4.— Gain and phase passband curves measure for IF module #12, for all 128 attenuator

settings.



– 19 –

2 2.5 3 3.5 4
49

49.5

50

50.5

51

51.5

52

Frequency (GHz)

G
ai

n 
(d

B
)

2 2.5 3 3.5 4
35

40

45

50

55

Frequency (GHz)

P
ha

se
 (d

B
)

Fig. 5.— Gain and phase passband details for IF module #12, measured at the lowest

attenuation between 2 and 4 GHz.


