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ABSTRACT

In this memo we present a method for deconvolving the primary beam response from

interferometric images of astronomical sources. The measured primary beam may be

time variable, non axi-symmetric and different on each antenna in the interferometer

array. The method is a simple extrapolation of existing software which subtracts a model

of the sky brightness distribution from uv data. After subtracting the best estimate of

the sky brightness distribution weighted by the measured primary beam pattern, the

residual uv data can be re-imaged to provide an improved model of the sky brightness

distribution and the process iterated if needed until the residual uv data are consistent

with thermal noise and other residual instrumental errors. The data are imaged using

canonical, time invariant primary beam patterns, and deconvolved using the measured

primary beam voltage patterns for each antenna.

In this memo we simulate observations with the CARMA telescope and calculate

the errors which result from the measured primary beam voltage patterns at 100 GHz.

We show that the effects of the measured ∼ 1 - 5% deviations from the canonical beam

patterns can be devastating, reducing the image fidelity from ∼ 8000 to ∼ 50 for a source

which fills the primary beam FWHM. The image fidelity can be greatly improved by

using the measured voltage patterns in the deconvolution.

The primary beam pattern is the product of the voltage patterns for each antenna

pair, and is complex valued if the voltage patterns are not identical. This results in

a complex valued image of a real, total intensity, sky brightness distribution; i.e. the

image shows a polarized flux distribution which varies across the primary beam, and

any real polarization distribution is confused by flux scattered from the total intensity

by primary beam errors. Polarization images can be corrected by subtracting a model

of the source weighted by the complex valued primary beam patterns from the uv data.
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1. Introduction

An aperture synthesis array samples the cross correlation of the signals from an array of antennas.

The signal from each antenna measures the sky brightness distribution weighted by the voltage

pattern of the antenna. Images of the sky brightness are formed by combining the measured cross

correlations between the antennas. The usual assumption for aperture synthesis imaging is that the

illumination of the sky by the antenna beam pattern is invariant, and the same for all antennas, then

an image of the primary beam weighted sky brightness can be formed from a Fourier transform

of the measured cross correlations. Sources larger than the primary beam require a mosaic of

interferometer and single dish observations at multiple pointing centers.

The effects of amplitude and phase errors in the calibration of the measured cross correlations are

well known. Less well appreciated are the pernicious effects of amplitude and phase errors in the

primary beam illumination of an extended source distribution. The case for a homogeneous array

of antennas has been well studied (e.g. Cornwell, Holdaway & Uson, 1993; Holdaway, 1998). The

image fidelity for mosaic observations is limited by pointing and primary beam errors (Cornwell,

Holdaway & Uson, 1993). The CARMA telescope is a heterogeneous array, currently with six 10.4

and nine 6.1 m antennas. Because of the different primary beam sizes, imaging with a heterogeneous

array must be treated as a mosaic observation even when only a single concentric pointing center

is used for all antennas (Carma memo 38).

For a point source at the pointing center, e.g. a quasar calibration observation, the array response

is well described by the forward gain for each baseline. For the CARMA telescope, the forward

gain, FWHM and thermal noise at 100 GHz is given in Table 1 for each antenna pair assuming an

aperture efficiency 75% for all antennas. The equivalent diameter and forward gain were calculated

from the geometric mean for each antenna pair.

For an extended source distribution, the array response depends on the primary beam illumination

of the sky for each antenna pair. The FWHM at 100 GHz is given in Table 1 assuming a Gaussian

primary beam pattern for each antenna. Images can be made from a mosaic of concentric pointing

centers by using the three primary beam types in table 1. (see Sault, Staveley-Smith and Brouw,

1996, and the MIRIAD Users Guide for a more extensive discussion). However, if proper account

is not taken of the different primary beam response for each antenna pair, amplitude and phase

errors in the measured cross correlations on different interferometer baselines degrade the image

fidelity.

In this memo we simulate observations with the CARMA telescope and calculate the errors which

result from the measured primary beam voltage patterns at 100 GHz. We show that the effects of

the measured ∼ 1 - 5% deviations from the canonical beam patterns can be devastating, reducing

the image fidelity from ∼ 8000 to ∼ 50 for a source which fills the primary beam FWHM. The

image fidelity can be greatly improved by using the measured voltage patterns in the deconvolution.

We present a method for deconvolving the primary beam response from interferometric images of

astronomical sources.
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2. Mosaicing Simulations

We simulated observations using an image of Cas A scaled to different diameters as a source model.

Simulated uv data sampled by the heterogeneous array of 10.4, and 6.1 m antennas were used

to make images at 100 GHz for the compact D-configuration of the CARMA 15- antenna array.

Figure 1 shows the VLA Image model of Cas A scaled to 128′′ diameter. uv data were generated

from the model image. Thermal noise was added to the uv data using a double sideband receiver

temperature 80 K and a zenith opacity 0.26 at 100 GHz. We used a bandwidth 4 GHz and the

antenna gains listed in Table 1 assuming an aperture efficiency 75% . The uv data were sampled

from -2 to +2 hours which gives good azimuthal uv coverage and minimizes antenna shadowing

(CARMA memo 5). Amplitude calibration errors were simulated by multiplying the uv data by

random gain variations for each antenna on a 30 min time scale, commensurate with the typical

calibration interval. The thermal noise in the image for each sub-array is listed in Table 1.

We generated uv data for a mosiac with a single pointing center and made images with the standard

MIRIAD software using the Gaussian beams listed in Table 1. The images were deconvolved using

both the canonical Gaussian primary beams, and the measured primary beams. The primary beam

pattern is the product of the voltage patterns for each antenna pair, and is complex valued if the

voltage patterns are not identical. We used the measured voltage patterns (Corder & Wright,

in preparation) to generate the real and imaginary parts of the primary beam pattern for each

antenna pair, and used this to generate uv data corresponding to the image model illuminated by

the measured primary beam patterns.

The measured primary beam may be time variable, non axi-symmetric and different on each antenna

in the interferometer array. The data are imaged using canonical, time invariant primary beam

patterns, and deconvolved using the measured primary beam voltage patterns for each antenna.

The method is a simple extrapolation of existing software which subtracts a model of the sky

brightness distribution from the uv data. After subtracting the best estimate of the sky brightness

distribution weighted by the measured primary beam pattern, the residual uv data can be re-imaged

to provide an improved model of the sky brightness distribution and the process iterated if needed

until the residual uv data are consistent with thermal noise or other residual instrumental errors.

The RMS on the residual image gives a measure of the image fidelity.

Table 1: CARMA Primary Beam FWHM, Gain and Thermal Noise at 100 GHz

Antennas Equivalent diameter FWHM Gain Thermal noise

m x m m arcsec Jy/K mJy

10.4 x 10.4 10.4 64 43 0.76

10.4 x 6.1 8.0 83 73 0.69

6.1 x 6.1 6.1 115 126 1.4
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3. Results

Table 2 lists the results of the mosaicing simulations. In the first 3 lines a mosaic image for 3 differ-

ent source diameters was deconvolved using the Maximum Entropy (MEM) algorithm (MIRIAD:

mosmem) with the canonical Gaussian primary beams. The image fidelity was calculated from the

difference between the MEM image and the original image model convolved to the same resolution

by a Gaussian restoring beam. The MEM deconvolutions used the interferometer data with a total

flux constraint. Single dish data were not includedin this simulation. The image fidelity is listed

in the last column as the ratio of the peak flux density in the model to the on-source RMS in the

residual image. The image fidelity increases as the source size decreases from 128 ′′ to 32′′ reflecting

the better uv sampling for the smaller source diameter.

Much higher image fidelity is obtained by deconvolving in the uv domain. After subtracting the

model image weighted by the canonical Gaussian primary beams the residual uv data are re-imaged.

Table 2 lists the results for a source diameter 128′′ and 64′′. For a 64′′ source diameter, the image

fidelity approaches the theoretical noise level. For a 128′′ source diameter, the image fidelity again

reflects the poorer uv sampling for the larger source.

Using the measured measured primary beam voltage patterns for each antenna we can subtract

the model image weighted by the actual primary beams for each antenna pair. Both real and

imaginary parts of the primary beam must be subtracted. Table 2 lists the resulting image fidelity

obtained when the actual primary beams are substituted for the canonical Gaussian primary beams

for various antenna pairs. The resulting image fidelity is much poorer. The modeling is actually the

reverse of real observations where the uv data are generated with the real primary beam patterns,

and deconvolved using Gaussian primary beam models, but the residual image shows the difference

in both cases. The RMS on the residual image, and the resulting image fidelity varies greatly with

the antenna pair used. This is a consequence of both the primary beam illumination of the source

distribution, and the spatial frequencies sampled by the antenna pair. The Cas A model image used

in these simulations has a fractal-like structure with a wide range of spatial frequencies over the

whole image, which minimizes the effects of the spatial frequencies sampled by each antenna pair.

Antennas 1 and 5, both 10m antennas, have large deviations from the Gaussian model and give large

residuals and lower image fidelity. Antennas 2 and 3, also 10m antennas, have smaller deviations

from the Gaussian model and give smaller residuals. Antenna pairs including 6m antennas generally

have small deviations from the Gaussian model and give higher image fidelity.

Table 2 also lists the image fidelity using the measured primary beam voltage patterns for all

antennas for 3 different source diameters. Although both real and imaginary parts of the primary

beam must be subtracted, using only the real part already degrades the image fidelity for a 128 ′′

source diameter from 8062 to 53. Including the imaginary part of the primary beam reduces the

image fidelity to 41. For a 64′′ source diameter the image fidelity is even lower. This somewhat

counter intuitive result can be understood when it is realized that the primary beam errors are only

important if they illuminate the source distribution. For a 128′′ source diameter, a large part the
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the source is not illuminated by the errors in the 10m antenna primary beams for a single pointing

centered on the Cas A model image. For 32′′ and 16′′ source diameters the image fidelity increases

as the source is illuminated by the inner parts of the primary beam patterns which have smaller

errors.

4. Discussion

4.1. Errors in the uv data induced by errors in the primary beam patterns

These results can be understood in terms of the errors in the uv data induced by errors in the

primary beam patterns. Figure 1 shows the VLA image model of Cas A scaled to 128 ′′ diameter.

Figure 2 shows the mosaic image of the Cas A model using a single pointing center at an observing

frequency 100 GHz. The grey scale pixel image shows the maximum entropy deconvolution using

the three standard truncated Gaussian primary beam models for 10m-10m 10m-6m and 6m-6m

antenna pairs. The contours show the residual image when the measured voltage patterns for just

one antenna pair, antennas 1 and 8, is used instead of the truncated Gaussian model. The errors

in the image are very similar to amplitude and phase calibration errors of the uv data, but in this

case are caused by amplitude and phase errors in the primary beam illumination of the source.

Figure 3 shows the primary beam pattern for cross correlation between antennas 2 and 6. The real

part of the complex primary beam is similar to the canonical Gaussian model, but the imaginary

part shows an asymmetric gradient caused by an offset illumination of the aperture on this pair of

antennas.

Figure 4 shows the amplitude of uv data from the central pointing with antennas 2 and 6. Black

points are the simulated uv data. The red curve is the model visibility for the Gaussian model

primary beam pattern used to generate the uv data. The blue curve is the model visibility using

the real part of the measured primary beam response. The green curve is the model visibility using

both the real and imaginary parts of the measured primary beam response. Figure 5 shows the

phase of the uv data. The amplitude and phase errors in the measured the uv data are caused by

amplitude and phase errors in the primary beam illumination of the source. Figure 6 shows the

primary beam pattern for cross correlation between antennas 7 and 9. Here the deviations from

the Gaussian model primary beam are much smaller and the corresponding amplitude and phase

errors in the measured uv data are much smaller (Figures 7 & 8).

The primary beam pattern is the product of the voltage patterns for each antenna pair. Cross

correlations between 6 and 10m antennas are in some cases poorly represented by the corresponding

Gaussian model, and give large amplitude and phase errors in the measured uv data (e.g. antennas

6 and 11 in Figures 9, 10, 11), and in other cases are well represented by the Gaussian model

and give smaller errors in the uv data ( e.g. antennas 2 and 11 in Figures 12, 13, 14). Detailed

inspection of the results for these antenna pairs is quite instructive in understanding the effects of
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errors in the real and imaginary parts of the primary beam patterns.

Pointing errors also cause amplitude and phase errors in the measured uv data by changing the

illumination pattern of the source. In these simulations the effects of pointing errors have been

removed by centering the measured voltage patterns, since pointing errors can be corrected on line

before acquiring the observations. The measured deviations in the primary beam patterns are not

well represented by focus errors although focus corrections are not currently made on-line.

4.2. Polarization errors

The primary beam pattern is the product of the voltage patterns for each antenna pair, and is

complex valued if the voltage patterns are not identical. This results in a complex valued image of

a real, total intensity, sky brightness distribution; i.e. the image shows a polarized flux distribution

which varies across the primary beam, and any real polarization distribution is confused by flux

scattered from the total intensity by primary beam errors.

We investigated the magnitude of the polarization errors by generating uv data from the Cas A

image weighted by the imaginary part of the measured primary beam response for each antenna

pair. The uv data were sampled from -2 to +2 hours with the primary beam rotated to the correct

paralactic angle at 0.5 hour intervals.

The uv data were then imaged. The imaginary part of the image, which should be zero for a real

sky brightness distribution, contains the instrumental polarizion response which results from the

illumination of the total intensity distribution by the imaginary part of the measured primary beam

patterns.

Figure 15 shows the polarization errors which would be observed with linearly polarized feeds in

position angle zero. i.e. the Stokes Q polarization. The peak to peak signal ∼ -0.7 to 0.7 Jy with

an RMS ∼ 150 mJy. Sampling multiple paralactic angles dilutes the errors since the primary beam

error pattern rotates on the sky. When only one paralactic angle was sampled, the error pattern in

the image was more pronounced, but did not significantly change the RMS value. The instrumental

polarization response across the primary beam has and RMS ∼ 4%, with peak values +/– 20% of

the peak in the total intensity image.

Polarization images can be corrected for measured primary beam patterns in the same way that we

created the model errors above; i.e. by subtracting a model of the total intensity image weighted

by the complex valued primary beam patterns from the measured uv data. The polarization image

is clearly limited by the image fidelity of the total intensity model.

The instrumental polarization response across the primary beam can be significantly improved by

reducing the imaginary part of the primary beam response which arises from asymmetries in the

aperture illumination. Figure 16 shows the instrumental polarization response to the Cas A total

intensity model when the primary beam voltage pattern for one of the 10m antennas with a large
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offset aperture illumination is replaced by one with a more symmetric pattern. As can be seen

from the examples we provided, antenna 6 has a large phase gradient across the primary beam

resulting from an offset aperture illumination. However, the largest primary beam errors come

from the antenna pair 1–4 which have a gradient in the same direction, so together they have a

large polarization response across the primary beam. Figure 16 shows the instrumental polarization

across the Cas A image when the voltage pattern for antenna 1 is corrected to the errors measured

in antenna 3. The resulting instrumental polarization response is significantly improved.

5. Conclusion

In this memo we simulate observations with the CARMA telescope and calculate the errors which

result from the measured primary beam voltage patterns at 100 GHz. These results are relevant

to all aperture synthesis arrays, including millimeter/submillimeter wavelength arrays like ALMA,

and cm/m wavelength arrays like ATA and SKA.

An aperture synthesis array samples the cross correlation of the signals from an array of antennas

(or phased array stations in the case of the SKA). The signal from each antenna (station) measures

the sky brightness distribution weighted by the voltage pattern of the antenna (station).

The primary beam pattern is the product of the voltage patterns for each antenna (station) pair,

and is complex valued if the voltage patterns are not identical. This results in a complex valued

image of a real, total intensity, sky brightness distribution; i.e. the image shows a polarized flux

distribution which varies across the primary beam. The total intensity image is degraded, and any

real polarization distribution is confused by flux scattered from the total intensity by primary beam

errors. A corollary is that a full polarization measurement is needed to correct the total intensity

image across the primary beam.

Images can be corrected by subtracting a model of the source weighted by the complex valued

primary beam patterns for each antenna (station) pair from the uv data. Errors in the model of

the sky brightness distribution, and in the measured voltage patterns for each antenna (station)

determine the errors in the corrected uv data. After subtracting the best estimate of the sky

brightness distribution weighted by the measured primary beam pattern, the residual uv data can

be re-imaged to provide an improved model of the sky brightness distribution and the process

iterated if needed until the residual uv data are consistent with thermal noise and other residual

instrumental errors.

At millimeter wavelengths, the voltage patterns may be best measured on strong astronomical

sources, or with a transmitter to obtain sufficient signal to noise. If the primary beam voltage

patterns can be characterized as a function of elevation, temperature etc, then these data can be

used to correct the uv data, as we have done for CARMA.

At cm/m wavelengths, the sky brightness distribution itself may provide the best voltage patterns



– 9 –

measurements. The problem is a self-calibration determining a sky brightness distribution and

primary beam patterns which are consistent with the uv data in the sense that when the final

model of the sky brightness distribution weighted by the primary beam patterns is subtracted, the

residual uv data are consistent with thermal noise and other residual instrumental errors.

On many of the CARMA 10m antennas, the real part of the complex primary beam is similar to

the canonical Gaussian model, but the imaginary part shows an asymmetric gradient caused by

an offset illumination of the aperture. The instrumental polarization response across the primary

beam can be significantly improved by reducing the imaginary part of the primary beam response

which arises from asymmetries in the aperture illumination.

Primary beam errors are present in all aperture synthesis arrays and limit the image fidelity. At

some level all arrays are heterogeneous. The alignments of the antenna surface, subreflectors, and

receiver feeds, feed leg blockage and reflections on the antenna structure all contribute to offsets

and asymetries in the aperture illumination. The magnitude and stability of these alignments will

determine how well we can correct the data for primary beam characteristics.

For a phased array station beam, atmospheric fluctuations make the complex valued station beam

time variable. Even for a clean voltage pattern with low level sidelobes from a single antenna, the

complex sidelobe pattern will vary with time due to pointing errors, which cause a time varying

illumination of the sky brightness distribution. Although it can be argued that using expensive,

high precision antennas for low frequency observations is a waste, primary beam and pointing errors

dominate the image errors in mosaic observations of large sources. If the antennas are engineered

for observations at higher frequency, then we will have more stable primary beam illumination

patterns at lower frequencies, and fewer parameters which must be determined to calibrate the

data.
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Table 2: Mosaicing simulations for Cas A at 100 GHz. Using single pointing mosaic with 1% gain

noise. The table gives the source diameter and the image fidelity for each deconvolution method.

MEM deconvolution with total flux constraint, 732.069 Jy

Method diam[′′] Fidelity

MEM deconvolution using Gaussian PB 128 18

MEM deconvolution using Gaussian PB 64 82

MEM deconvolution using Gaussian PB 32 246

subtract Gaussian PB from uv data 128 8062

subtract Gaussian PB from uv data 64 44775

measured PB for ant 1 and 5 128 249

measured PB for ant 2 and 3 128 1294

measured PB for ant 1 and 8 128 3198

measured real PB for all antennas. 128 53

measured complex PB for all antennas. 128 41

measured complex PB for all antennas. 64 31

measured complex PB for all antennas. 32 38

measured complex PB for all antennas. 16 73
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Fig. 1.— VLA Image model of Cas A scaled to 128′′ diameter
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Fig. 2.— Mosaic Image of Cas A model scaled to 128′′ diameter observed with the CARMA 15-

antenna D configuration using a single pointing center at an observing frequency 100 GHz. The grey

scale pixel image shows the maximum entropy deconvolution using the three standard truncated

Gaussian primary beam models for 10m-10m 10m-6m and 6m-6m antenna pairs. The contours

show the residual image when the measured voltage patterns for just one antenna pair, antennas

1 and 8, is used instead of the truncated Gaussian model. Contour intervals: -.004,-.003,-.002,-

.001,.001,.002,.003,.004 Jy.
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Fig. 3.— Primary beam pattern for cross correlation between antennas 2 and 6. The red contours

are the real part of the primary beam response. The blue contours are the imaginary part of the

primary beam response. contour levels=-.2,-.15,-.1,-.05,.05,.10,.15,.2,.3,.4,.5,.6,.7,.8,.9
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Fig. 4.— Amplitude of uv data from the central pointing with antennas 2 and 6. Black points are

the simulated uv data. The red curve is the model visibility for the Gaussian model primary beam

pattern used to generate the uv data, The blue curve is the model visibility using the real part of

the measured primary beam response. The green curve is the model visibility using the real and

imaginary parts of the measured primary beam response.
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Fig. 5.— Phase of uv data from the central pointing with antennas 2 and 6. Black points are the

simulated uv data. The red curve is the model visibility for the Gaussian model primary beam

pattern used to generate the uv data, The blue curve is the model visibility using the real part of

the measured primary beam response. The green curve is the model visibility using the real and

imaginary parts of the measured primary beam response.
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Fig. 6.— Primary beam pattern for cross correlation between antennas 7 and 9. The red contours

are the real part of the primary beam response. The blue contours are the imaginary part of the

primary beam response. contour levels=-.2,-.15,-.1,-.05,.05,.10,.15,.2,.3,.4,.5,.6,.7,.8,.9
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Fig. 7.— Amplitude of uv data from the central pointing with antennas 7 and 9. Black points are

the simulated uv data. The red curve is the model visibility for the Gaussian model primary beam

pattern used to generate the uv data, The blue curve is the model visibility using the real part of

the measured primary beam response. The green curve is the model visibility using the real and

imaginary parts of the measured primary beam response.
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Fig. 8.— Phase of uv data from the central pointing with antennas 7 and 9. Black points are the

simulated uv data. The red curve is the model visibility for the Gaussian model primary beam

pattern used to generate the uv data, The blue curve is the model visibility using the real part of

the measured primary beam response. The green curve is the model visibility using the real and

imaginary parts of the measured primary beam response.
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Fig. 9.— Primary beam pattern for cross correlation between antennas 6 and 11. The red contours

are the real part of the primary beam response. The blue contours are the imaginary part of the

primary beam response. contour levels=-.2,-.15,-.1,-.05,.05,.10,.15,.2,.3,.4,.5,.6,.7,.8,.9
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Fig. 10.— Amplitude of uv data from the central pointing with antennas 6 and 11. Black points

are the simulated uv data. The red curve is the model visibility for the Gaussian model primary

beam pattern used to generate the uv data, The blue curve is the model visibility using the real

part of the measured primary beam response. The green curve is the model visibility using the real

and imaginary parts of the measured primary beam response.
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Fig. 11.— Phase of uv data from the central pointing with antennas 6 and 11. Black points are

the simulated uv data. The red curve is the model visibility for the Gaussian model primary beam

pattern used to generate the uv data, The blue curve is the model visibility using the real part of

the measured primary beam response. The green curve is the model visibility using the real and

imaginary parts of the measured primary beam response.
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Fig. 12.— Primary beam pattern for cross correlation between antennas 2 and 11. The red contours

are the real part of the primary beam response. The blue contours are the imaginary part of the

primary beam response. contour levels=-.2,-.15,-.1,-.05,.05,.10,.15,.2,.3,.4,.5,.6,.7,.8,.9
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Fig. 13.— Amplitude of uv data from the central pointing with antennas 2 and 11. Black points

are the simulated uv data. The red curve is the model visibility for the Gaussian model primary

beam pattern used to generate the uv data, The blue curve is the model visibility using the real

part of the measured primary beam response. The green curve is the model visibility using the real

and imaginary parts of the measured primary beam response.
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Fig. 14.— Phase of uv data from the central pointing with antennas 2 and 11. Black points are

the simulated uv data. The red curve is the model visibility for the Gaussian model primary beam

pattern used to generate the uv data, The blue curve is the model visibility using the real part of

the measured primary beam response. The green curve is the model visibility using the real and

imaginary parts of the measured primary beam response.
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Fig. 15.— Mosaic Image of Cas A model scaled to 128′′ diameter observed with the CARMA

15-antenna D configuration using a single pointing center at an observing frequency 100 GHz.

The grey scale pixel image shows the maximum entropy deconvolution using the three standard

truncated Gaussian primary beam models for 10m-10m 10m-6m and 6m-6m antenna pairs. The

contours show the imaginary part of the image when the measured voltage patterns for all antenna

pairs are used instead of the truncated Gaussian model. The uv data were sampled from -2 to +2

hours with the primary beam rotated to the correct paralactic angle at 0.5 hour intervals. Contour

intervals at 5, 10 and 20% of the peak in the total intensity image.
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Fig. 16.— Mosaic Image of Cas A model scaled to 128′′ diameter observed with the CARMA

15-antenna D configuration using a single pointing center at an observing frequency 100 GHz.

The grey scale pixel image shows the maximum entropy deconvolution using the three standard

truncated Gaussian primary beam models for 10m-10m 10m-6m and 6m-6m antenna pairs. The

contours show the imaginary part of the image when the measured voltage patterns for all antenna

pairs are used instead of the truncated Gaussian model. The uv data were sampled from -2 to +2

hours with the primary beam rotated to the correct paralactic angle at 0.5 hour intervals. Contour

intervals at 5, 10 and 20% of the peak in the total intensity image.


