
CARMA Memorandum Series #58

Third-generation CARMA
Correlator FPGA Configurations

Kevin P. Rauch (UMD)

July 4, 2015

ABSTRACT

This memo describes details of the FPGA signal processing and control logicused in the
third-generation (3G) CARMA correlator. This hardware incorporatesa new ultra-wideband
A/D converter operating at 20 GHz, sampling the entire 1-9 GHz CARMA IF band for each
of 46 inputs (23 antennas x 2 polarizations). Altera Stratix IV GT FPGAs areused to cap-
ture the digitized input signals, downconvert the IF into 8 individual sub-bands (with selectable
bandwidth and center frequency), and compute cross-correlation lagsin real time. Included
here are descriptions of the cross-correlation baseline partitioning; input data pipelines; digi-
tal signal processing components and performance; FPGA memory map; and control register
specification.

– 2 –

Change Record
Revision Date Author Sections/Pages Affected

Remarks
0.1 2012-Jun-12 Kevin Rauch

Draft 1.

0.2 2013-Mar-12 Kevin Rauch

Draft 2.

0.3 2013-Apr-01 Kevin Rauch

Draft 3.

0.4 2013-Oct-11 Kevin Rauch

Draft 4.

0.5 2014-Jun-18 Kevin Rauch

Draft 5.

1.0 2015-Jul-4 Kevin Rauch

Final report.

– 3 –

1. Correlator Overview

The CARMA array achieved first-light in early 2006. At that time the array contained 15 antennas—six
10 m (formerly OVRO) dishes and nine 6 m (formerly BIMA dishes). The first-light correlator consisted of
three 15-input bands of recycled COBRA hardware reprogrammed to support both wideband and spectral
line operation, and offered a total bandwidth of up to 1.5 GHz. In 2008, eight 3.5 m (formerly SZA) dishes
were moved to Cedar Flat for eventual integration into CARMA, initially operating as an independent array
attached to a dedicated wideband correlator comprised of sixteen 500 MHz wide, 8-input bands of COBRA
hardware. Each COBRA digitizer board contains two 1 GHz 2-bit ADCs andfour Altera FLEX 10KE data-
processing FPGAs with 5,000 logic cells each, for a total signal processing capacity of 10,000 logic cells
per RF input. Each COBRA correlator board contains 10 Altera FLEX 10KEdata-processing FPGAs, for a
total of 50,000 logic cells per board (5,000 per cross-correlation baseline).

The second generation (2G) CARMA correlator was put into service in 2010 and offers eight 15-input bands
of 500 MHz each (in wideband mode), for up to 4 GHz of total bandwidth. In2011, complementary support
for four 30-input bands of up to 500 MHz each was added to its capabilities, enabling both 15-antenna full-
Stokes and 23-antenna single-polarization observations. The second generation CARMA boards are based
on Altera Stratix II GX FPGAs. Each CARMA digitizer board contains two 1 GHz8-bit ADCs and four
Stratix II GX 90K FPGAs devoted to signal processing, a total of 180,000 logic cells per RF input per output
band. The more than order-of-magnitude increase in logic compared to COBRA allowed several digital
signal processing algorithms to be performed in real time by the FPGAs, including both phase offset and
fractional-sample delay corrections, as well as cross-correlation calculations with up to 4-bit samples (Rauch
2008). Each CARMA correlator board contains four Stratix II GX 130K FPGAs, for a total of 520,000 logic
cells per board (32,000 per baseline in 15-input single-polarization observing modes), allowing up to a 6x
increase in channel resolution compared to COBRA.

This document details the FPGA-based capabilities of the third generation (3G) CARMA correlator (also
called the ‘fast-sampler’ or ‘MRI’ correlator). This hardware iteration focuses on extending the processed
bandwidth up to 8 GHz with 23 inputs, with channel resolution comparable to thatpreviously delivered over
4 GHz with 15 inputs by the second generation system.

2. Third-generation Hardware Design

The 3G hardware represents a major advance in RF digitization capabilities withthe introduction of∼
20 GHz 10-level samplers, each digitizing the entire usable receiver IF of1-9 GHz for a single antenna
polarization. Unlike previous generations, two polarizations are available simultaneously from all 23 anten-
nas. This corresponds to a raw data rate of nearly 4 Tbps, a four-foldincrease over the second generation
CARMA correlator. In contrast to previous designs, each ADC resideson an independent card directly con-
nected to two FPGA boards through high-speed (10 Gbps) transceiverlanes. Each FPGA board contains a
single Altera Stratix IV GT device with 530,000 logic elements.

The use of ultra-wideband ADCs alters the layout of FPGA signal processing to be more input-centric as
opposed to band-centric, as was previously the case. In particular, theformer analog downconversion pro-
cess, which created eight analog 500 MHz IF sub-bands connected to parallel bands of correlator hardware,
is now performed digitally by ‘bandformer’ FPGA boards, which receivethe raw ADC data via high-speed
serial links. These boards combine the signal processing functionality ofthe 2G CARMA digitizer boards
with flexible IF downconversion capabilities. A pair of bandformer FPGA boards both receive the full out-

– 4 –

put from a single ADC and process it into four independent IF sub-bands each, for a total of eight observing
bands. Each observing band is defined by its IF center frequency andbandwidth (the latter ranging from
1280 MHz to 2 MHz). Restrictions on center frequency and bandwidth values are detailed in §5.3 and §5.4,
respectively. Each sub-band has≈130,000 FPGA logic elements available for signal processing, including
the new digital downconversion function—significantly less than the≈180,000 logic elements per input per
band of the 2G correlator. However, the highly oversampled input data rate (relative to the sub-band output
frequency) greatly reduces the computational complexity of certain functionality—in particular delay pro-
cessing (§5.1)—and as a result the decimation filter quality (§5.4 and §5.5) remains unchanged compared to
the 2G system.

The Stratix IV GT device on each FPGA card contains 32 full-duplex transceivers capable of operating at
speeds up to 11.3 Gbps. Transceivers are grouped into blocks of four for external communication. The
front panel contains four QSFP+ cable jacks connected to the 16 left-side transceivers (each QSFP+ cable
carries the traffic for four send and receive lanes—i.e., one transceiver block); the 16 right-side transceivers
are accessible through connectors on the chassis backplane via a reartransition module (RTM) or simi-
lar bridge card. Bandformer FPGA cards use two front-panel QSFP+ cables operating at 10.24 Gbps to
receive the 80.96 Gbps (4-bit x 20.48 GHz) ADC input data from a digitizercard. The remaining two
front-panel connectors transmit identical copies of processed, downconverted IF segments for four inputs
(2 antennas x 2 polarizations, one per lane) to correlator FPGA cards for cross-correlation. The rear (right-
side) transceivers are used to exchange processed input data between groups of four adjacent bandformer
boards to allow each bandformer to output collated data for a single IF segment (see Fig. 1), as required by
the correlation back-end. All inter-FPGA communication links run at either 6.4Gbps (for the 1280 MHz
and 640 MHz bandwidth modes) or 5.12 Gbps (for 512 MHz and below), including the 8-to-10 bit mod-
ulation used for link protection. The corresponding net input data rates are 5.12 Gbps and 4.096 Gbps,
respectively—sufficient to support 2-bit samples x 1280 MHz bandwidthoperation and up to 4-bit sampling
in all lower bandwidth modes (including full-Stokes in all cases).

Although there are only 46 ADC samplers in the final system, requiring 46× 2 = 92 bandformer boards
for IF band processing (four bands per FPGA), 48×2 = 96 bandformer boards are needed to complete the
backplane data networks. Each IF band also contains 12 correlator FPGA boards devoted to calculation of
the cross-correlation baselines, for a total of 12×8 = 96 correlator FPGA boards. Correlator FPGA boards
are physically identical to bandformer FPGA boards, but differ in their FPGA configurations, backplane
connections, and front-panel cabling arrangements. In total 2× 96 = 192 FPGA boards are required to
implement the 3G correlator (excluding spares).

Each 3G correlator FPGA contains four times the logic of a 2G correlator FPGA, but processes six times as
many baselines (24 versus 4; cf. §3). The base expectation thereforeis a 1.5x decrease in channel resolution
compared to the previous system. As described in §7, however, the correlation logic has been redesigned
in the 3G correlator to maximize FPGA resource usage and hence resolution, thereby maintaining similar
channel counts relative to 2G hardware.

3. Baseline Partitioning

In 23-input correlation mode there are(23× 24)/2 = 276 correlation baselines per observing band (23
auto-correlations and 253 cross-correlations). To maximize channel resolution, these must be distributed as
evenly as possible among the 12 correlator FPGAs allocated to each band. In addition, to support indepen-

– 5 –

L3

L2

L1

L0

R3

R2

R1

R0

L3

L2

L1

L0

R3

R2

R1

R0

L3

L2

L1

L0

R3

R2

R1

R0

L3

L2

L1

L0

R3

R2

R1

R0

YY Receive
[IF Band Out]XX Transmit

−

−
B1

B1

N ADC Input

1.3
3.1
1.2
2.1

4.1
1.4

2.1
1.2

2.3
3.2

2.4
4.2

−

−
B2

B2

3.1
1.3
3.4
4.3

3.2
2.3−

−
B3

B3

3.4

4.1

2.4

−

−
B4

B4

1.4

4.3

4.2

Right Transceiver Block Connections

1

1

2

2

3

3

4

4

(Input.Band)

Fig. 1.— Bandformer board data fanout diagram. ADC input (gold) is received via two front-panel connec-
tions. Dual IF segment outputs (blue) containing four unique sample streams(2 antenna x 2 polarizations)
are transmitted to correlator boards. Backplane traffic (red, green) redistributes input data for collation into
front-panel output streams. Front-panel connections use the left-sideFPGA transceivers; connections to the
backplane use those on the right.

– 6 –

15141312 16

34

24

45

35

25 26

36
1

23

1B 1C 1E1D

2B

3B

4B 4C 4D 4E

2C 2D 2E

3E3C 3D

1F

2F

3F

4F

1

1K 1L 1N1M

2K

3K

4K 4L 4M 4N

2L 2M 2N

3N3L 3M

5K 5L 5N5M

6K

7K

8K 8L 8M 8N

6L 6M 6N

7N7L 7M

5G 5H 5J5I

6G

7G

8G 8H 8I 8J

6H 6I 6J

7J7H 7I

1G 1H 1J1I

2G

3G

4G 4H 4I 4J

2H 2I 2J

3J3H 3I

CG CH CI CJ

9G 9H 9J9I

AG

BG

AH AI AJ

BJBH BI

CK CL CM CN

9K 9L 9N9M

AK

BK

AL AM AN

BNBMBL

18 1A19

27

37

47 48 49 4A

28 29 2A

3A38 39

5B 5C 5D 5E 5F5A59585756

67 68 69 6A 6B 6C 6D 6E

7E7D7C

8B 8C 8D 8E

79 7A

89 8A

78

8F

9A 9B 9C 9D 9E 9F

AB AD AE AFAC

BC BD BE BF

CD CFCE

DE DF

EF
4

DG DH DI DJ DK

EG EI EJ EK EM EN

FG FI FJ FK FL FNFM
11

10

F H I J K L M

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

N

GH GI GJ

HI HJ

IJ IK IL IM IN

JK JL JM JN

KL KM KN

LM LN

MN

GK GL GM GN

HK HL HM HN

G

H

I

J

K

L

M

N

46

1 3 4 5 6 7 8 9 A B DC

DM DN

N

17

2

3

5

8

6 7

9

DL

12

EH

FH

EL

E

7F

6F

2

7B
4 3

GAntenna

Bandformer Baseline

Partition Number

AUX_CONFIG = 1

5 5 5 4 4 4 44 4 5 5 6

AUX_CONFIG = 0

23−Station Correlator Baseline Partitioning [12 Partitions]

Fig. 2.— Single-polarization baseline-to-FPGA partition map for the 3G correlator. Each correlator FPGA
processes up to 24 cross-correlation baselines; bandformer FPGAs also calculate a small number of base-
lines. This map supports both 23-input and independent 15-input/8-inputoperation. Total input fanout is
indicated in small type above each cable bundle.

– 7 –

1 34
12

N Partition Number

42

BC
9A

3

78
56

L3

L2

L1

L0

R3

R2

R1

R0

L3

L2

L1

L0

R3

R2

R1

R0

L3

L2

L1

L0

R3

R2

R1

R0

L3

L2

L1

L0

R3

R2

R1

R0

6 7 8 9

5 11 1210

F−
56

56
78

YY Receive

12

F−

−

−

78

78

−

9A
−

34
−

BC
−

56

BC
9A

34
12

−
DE DE

−

F−
−

DE
−

78
F−

Right Transceiver Block Connections

34

12

GH
−

−

−

KL
−

−

−

9A

IJ
−

−
78

−
MN

BC
−

56

 −

IJ
GH

12
56
34
−

 −
34

56
12

KL
MN GH

IJ

9A
BC
78

MN
KL
BC
9A
 −
78

−

DE
−

−

F−

KL

BC
−

F−
−

F−
−
−

DE

−

−
MN

GH
−

IJ
−

−

DE
−

DE
MN

GH
IJ

DE
−

F−
−

F−
−

MN

GH
IJ

F−
56

 [Primary]

34
− −

XX Transmit [VLBI out]

KL
−

9A

KL
−

−
−

− − −
F−

−

−
9A

−

12
−

DE
−

BC

78

56

BC9A

Fig. 3.— Correlator board cable fanout diagram. Primary inputs (blue) arereceived from bandformer
boards; the remainder are passed between correlator boards. Front-panel connections use the left side
transceivers, connections to the backplane use those on the right. The communication map is designed
to support both 23-input and independent 15-input/8-input operation,as well as complete 15-element fanout
to an external unit (e.g., a VLBI beamformer).

– 8 –

dent 15-input/8-input sub-array operation, no cross-communication between boards belonging to separate
sub-arrays is allowed (excluding inputs ignored by the sub-array in 15+8 mode). To further improve density
(and facilitate testing), bandformer FPGAs also compute a small fraction of thebaselines, including the
auto-correlations in particular. In contrast to the 2G system, bandformer boards supply only two copies of
each input to the correlator boards; the latter is responsible for all remaining data fanout. Hence the viability
of a baseline partitioning scheme depends not only on the number of baselines per FPGA, but also on the
data fanout required to implement it, which must be compatible with the FPGA boardI/O capabilities. It is
equally important to maximize the regularity of the partitioning scheme in order to minimizethe number of
distinct FPGA configurations, which are labor-intensive to produce andmaintain.

The final baseline partition derived for use with 23-input modes in the 3G system is shown in Figure 2. The
fanout of any single input (shown in small type above the correspondingcable bundle) ranges from four to
six. Each of the eight observing bands partitions baselines in this manner. Correlator FPGAs calculate up to
24 baselines arranged in one of two basic patterns. Bandformer FPGAs calculate two auto-correlations—one
for each input of the observing band it outputs—as well as the associatedcross-correlation; this arrangement
evenly distributes correlation logic among the bandformer FPGAs. A correlator board cable fanout map
implementing Figure 2 is shown in Figure 3. For use with sub-arrays, not onlymust each correlator board
calculate baselines for at most one sub-array, but also itcannot provide active data fanoutfor any other
sub-array—otherwise they would no longer be independent (reconfiguring one would break data fanout
and synchronization for the other). The fanout map was chosen to support both 23-input operation and
independent 15-input/8-input sub-arrays (only). Note that the two sub-arrays consist specifically of the first
15 and final 8 inputs; no other mapping of inputs to sub-arrays is possible as data fanout is fixed by the cable
topology.

In 46-input correlation mode (23 inputs x 2 polarizations), each single inputin Figure 2 becomes a pair
of inputs (e.g., 1→ {1L,1R}) and each baseline expands into a 2x2 grid of baselines split between two
FPGA boards—halving both the number of observing bands (from eight tofour) and the channel resolution
relative to the corresponding 23-input mode. In this case bandformers compute four auto-correlations and
six cross-correlations per four outputs (2 inputs x 2 polarizations), splitevenly between two bandformers.
Dual-polarization observations, where only the diagonal of the 2x2 grid isneeded, present a special case.
In contrast to the previous correlator, the 3G hardware provides the option to either halve the resolution but
maintain a full eight observing bands, or (as for the 2G system) maintain resolution but reduce the number
of bands to four. Supporting both options does not increase the number of FPGA configurations; the former
reuses the 46-input modes and the latter, the 23-input modes. The former option could not be supported
previously due to a lack of digitizer hardware.

4. FPGA Memory Map

The FPGA memory map component unifies all externally-visible FPGA control registers and memory blocks
into a single contiguous address space—from the viewpoint of the system bus bridge, it appears as a single
large, fixed-latency RAM block. The memory map allocates 1 MB of address space arranged as 256K× 32-
bit (big-endian) words, equivalent to the combined capacity of all M144Kblocks in an EP4SGX530 device.
(In a typical instantiation, not all of the available address space is populated with actual RAM.) The control
register layout consists of 16× 32-bit read-only registers in addresses 0x00000 to 0x0000F, followedby
48 read-write registers in addresses 0x00010 to 0x0003F. All controlregisters possess dedicated outputs

– 9 –

to internal logic. Internally the control registers shadow the initial 64 locationsof the first M144K RAM
block, which is otherwise reserved for future use. This is followed by one M144K tap RAM block which
can be used for (pre-configured) internal signal capture. One additional M144K block is allocated for each
correlation calculated by the chip and used for lag dumps (in 46-input mode, two cross-correlations are
dumped per RAM block).

Table 1 summarizes the contents of external FPGA memory. Details of individual control registers follows
(any omitted bitfields are reserved and their contents unspecified):

• MMAP_REG_VERSION [Version (read-only)]
This register contains board-level configuration settings. The bandwidth mode number encodes the
spectral bandwidth; 0x0 to 0x9 for 1000 MHz to 2 MHz (1000× 2−m MHz) and 0xA to 0xF for
1250 MHz to 39 MHz (1250× 210−m MHz). In this register the mode refers to the bandwidth pro-
cessed by the correlation logic (corresponding to one of the four IF segments).

– bits 31-24:Reserved(cleared)

– bits 23-20:Hardware revision: 0x2 = 3G prototype

– bits 19-16:FPGA type: 0xB = bandformer, 0xC = correlator

– bits 15-12:Requantized sample width

– bits 11-8: Correlation bandwidth mode number (local base)

– bits 7-0: Configuration feature version

• MMAP_REG_CORL_BASE [Correlation configuration base (read-only)]
Correlation logic settings shared by all correlations on the FPGA.

– bits 31-29:Reserved(cleared)

– bit 28: Auxiliary correlation input indicator (USE_AUX)

– bits 27-16:Number of (32-bit) lag block locations written (2×DUMP_COUNT)

– bits 15-12:Metadata elements per lag stream (NUM_META)

– bits 11-0: Number of zero+positive lags per stream (1+NUM_LAGS)

• MMAP_REG_CORL_CONF1 [Correlation configuration register 1 (read-only)]
Correlation logic settings unique to the first correlation set.

– bits 31-28:Reserved(cleared)

– bits 27-24:Number of baselines per RAM block (NUM_PACK1)

– bits 23-12:Number of quantization state counters (NUM_QCNT1)

– bits 11-4: Number of correlation baselines (NUM_CORL1)

– bits 3-2: Reserved(cleared)

– bits 1-0: Correlation type; 0 = auto, 1 = cross +lags only , 2 = cross -lags only, 3 = cross +lags
and -lags (CORL_TYPE1)

• MMAP_REG_CORL_CONF2 [Correlation configuration register 2 (read-only)] Correlation logic set-
tings unique to the second correlation set (if present).

– 10 –

– bits 31-28:Reserved(cleared)

– bits 27-24:Number of baselines per RAM block (NUM_PACK2)

– bits 23-12:Number of quantization state counters (NUM_QCNT2)

– bits 11-4: Number of correlation baselines (NUM_CORL2)

– bits 3-2: Reserved(cleared)

– bits 1-0: Correlation type; 0 = auto, 1 = cross +lags only , 2 = cross -lags only, 3 = cross +lags
and -lags (CORL_TYPE2)

• MMAP_REG_STATUS_OLD [Previous correlation status (read-only)]
This register contains the value ofMMAP_REG_STATUS when the most recent lag dump completed.
It can be used determine the final status of the previous correlation while thenext is in progress.

• MMAP_REG_STATUS_META1 andMMAP_REG_STATUS_META2 [Correlation metadata status (read-
only)]
Starting with bit 0 ofSTATUS_META2 through bit 31 ofSTATUS_META1, contains one bit per
correlation indicating whether erroneous pipeline metadata has been encountered, which may invali-
date the corresponding lags. These registers are automatically cleared whenever the correlation status
register (MMAP_REG_STATUS) is cleared.

• MMAP_REG_STATUS_TRX [Transceiver lane status (read-only)]
Contains detailed status information for a single transceiver lane (selected using a field in
MMAP_REG_TRX_CTRL). Some byte-oriented status is delivered demux-by-4 as incoming bytes are
demultiplexed to 32-bit parallel data into the FPGA core.

– bits 31-28:Transceiver state machine code

– bit 27: Transmit PLL lock indicator

– bit 26: Receive PLL lock indicator

– bit 25: Receive LTD (lock-to-data) indicator

– bit 24: Receive PMA (analog signal) active indicator

– bits 23-20:Receive word synchronization status (demux-by-4 output)

– bit 19: Transceiver block powerdown indicator

– bit 18: Transmit phase compensation FIFO error

– bit 17: Receive phase compensation FIFO error

– bit 16: Receive run-length violation error

– bits 15-12:Receive 8B/10B decode error (demux-by-4 output)

– bits 11-8: Receive 8B/10B disparity error (demux-by-4 output)

– bits 7-4: Receive control code detection (demux-by-4 output)

– bits 3-0: Receive alignment byte detection (demux-by-4 output)

• MMAP_REG_CTRL_TAP [Control bit readback (read-only)]

– bits 31-24:Reserved(cleared)

– 11 –

– bits 23-20:Center frequency update error (IF segments 3-0)

– bits 19-16:Phase offset update error (IF segments 3-0)

– bit 15: Input delay update error

– bits 14-13:Reserved(cleared)

– bit 12: Tap RAM write enable

– bit 11: Global PLL reset

– bit 10: Global logic reset

– bit 9: Global 1 PPS signal

– bit 8: Current 180 degree phase switch demodulation state

– bit 7: Reserved(cleared)

– bit 6: Lag dump FSM interruptN signal (active-low)

– bit 5: Correlation dump signal

– bit 4: Correlation active signal

– bits 3-0: Correlation control bits

• MMAP_REG_CONFIG [Data processing configuration]
This register contains FPGA-specific configuration settings. The IF mode numbers are defined as for
MMAP_REG_VERSION and are generally read-only, except for the special narrowband configuration
which supports a range of values (0x5 to 0x9). In the latter case, correlator configurations use the
IF segment 0 mode; the others are meaningful only for bandformers. Invalid modes written to these
fields are ignored (readback always presents the active value). Theinput number field determines the
cross-correlation input label for band data produced by the board and is valid for bandformers only
(for 2G hardware this information was hard-wired into an initialization file).

– bits 31-28:Bandwidth mode number, IF segment 3

– bits 27-24:Bandwidth mode number, IF segment 2

– bits 23-20:Bandwidth mode number, IF segment 1

– bits 19-16:Bandwidth mode number, IF segment 0

– bits 15-12:Active IF segment count (read-only, 4 maximum)

– bits 11-8: Reserved(configuration subtype field)

– bits 7-0: Digitizer input number

• MMAP_REG_STATUS [Correlation status]

– bits 30-4: Counter indicating the number of clock cycles the correlation (specifically, multiply-
adder) logic was active/enabled since the last correlation dump. Cannot be reset externally
(cleared automatically).

– bits 3-2: Reserved(cleared)

– bit 1: Correlation error indicator; if set, the correlate signal went high beforelag data was
successfully transferred to FPGA RAM. Asserts thecorl_doneN interrupt when set.

– 12 –

– bit 0: Correlation done indicator; this bit is set once lag data (including metadata andquanti-
zation counts) for the most recent integration has been successfully transferred to FPGA RAM.
Asserts thecorl_doneN interrupt when set.

• MMAP_REG_CORL_MODE [Correlator operating mode]

– bit 2: Decimation filter input samples replaced with a periodic delta function accordingto
MMAP_REG_IMPULSE settings

– bits 1-0:

∗ Mode"10": digitizer input samples replaced with ramp pattern 0x87780FF0, 0x96691EE1,
... (replicated to input sample width)

∗ Mode"01": prompt/delay correlation inputs replaced with test patterns based on
MMAP_REG_TEST_PATTERN

∗ Mode"00": normal operation of the pipeline and correlation logic

• MMAP_REG_DEMOD [Phase-switch demodulation state]
Encodes the 180 degree phase-switch demodulation sequence for up to 32 consecutive integrations
(bits 31-0, with 0 being read first). A set bit indicates that samples should benegated during the
corresponding integration cycle. Demodulation is applied to the raw 4-bit ADCinput.

• MMAP_REG_IMPULSE [Impulse response pattern parameters]
Determines the frequency of sample generation for impulse response filter testing (cf.CORL_MODE,
bit 2). The (up to) 16-bit LSBs encode the impulse sample value (limited toSAMP_WIDTH); the
16-bit MSBs represent the number of (pipeline) clock cycles between impulse sample output in the
pattern generator, with all zeroes output in between.

• MMAP_REG_TEST_PATTERN [Correlation sample test patterns]
The 16-bit LSBs and MSBs define the test patterns fed to the prompt (PIN) and delay (DIN) cross-
correlation inputs, respectively, in self-test mode (cf.CORL_MODE). Reset default patterns arePIN =
0xEB14 andDIN = 0x14EB.

• MMAP_REG_PIPE_SEL [Pipeline multiplexer selects]
Sets the select lines for the pipeline data multiplexers, which determine the data input to the correlation
logic and output to the transceivers. The inputs to these multiplexers can be deduced from Figs. 1-3
and are documented explicitly in the correspondingpipeline VHDL components. For bandformers
the contents are as follows:

– bits 31-14:Reserved

– bit 13: Metadata select (manual)

– bit 12: Input A/B select

– bits 11- 8: IF segment select

– bits 7- 0: IF delay control

The metadata select bit is a manual trigger that replaces sample data (all IF segments) with their meta-
data in the pipeline. This is provided for testing; in normal operation this bit remains cleared as the
substitution is automatically enabled during metadata verification each lag dump (cf. §6). Input A/B

– 13 –

select swaps adjacent inputs on the bandformer’s correlator outputs (swapping the two polarizations
for each antenna). The (0-based) IF segment select specifies whichsegment is correlated/output by the
FPGA (cf. Fig. 1); if the specified value is equal to or greater than the number of active IF segments
(seeMMAP_REG_CONFIG), behavior is undefined. The IF delay control is used to align internal IF
segment data with transceiver input for correlation and band output.

For correlators the contents are:

– bits 31-29:Reserved

– bit 28: Correlation block baseline select (NUM_PACK = 2 only)

– bits 27-26:Correlation block auxiliary input select

– bits 25-24:Correlation block column 2 input select

– bits 23-22:Correlation block column 1 input select

– bits 21-20:Correlation block column 0 input select

– bits 19-18:Correlation block row 1 input select

– bits 17-16:Correlation block row 0 input select

– bits 15-14:Transceiver block 7 output select

– bits 13-12:Transceiver block 6 output select

– bits 11-10:Transceiver block 5 output select

– bits 9-8: Transceiver block 4 output select

– bits 7-6: Transceiver block 3 output select

– bits 5-4: Transceiver block 2 output select

– bits 3-2: Transceiver block 1 output select

– bits 1-0: Transceiver block 0 output select

The block baseline select determines which half of the 2x2 baseline block a NUM_PACK = 2 corre-
lator configuration calculates (0 for the diagonal, 1 for the first row).

• MMAP_REG_DIG_DELAY [Digitizer sample delay (current)]
Contains the current sample delay applied to the raw ADC input stream. Normallyused for read-
back in conjunction withMMAP_REG_DIG_DELAY_1PPS andMMAP_REG_DIG_DELAY_STEP.
If written, the new value overrides the current delay setting during the next update cycle (after which it
increments as usual). The delay is a 32-bit fixed-point value with 12-bit fractional component; hence
the maximum possible delay is∼ 220 samples (52µs @ 20 GHz).

• MMAP_REG_DIG_DELAY_1PPS [Digitizer sample delay (next 1 PPS)]
The input sample delay to set at the next 1 PPS tick. After this time—until the next1 PPS tick—
the delay will increment byMMAP_REG_DIG_DELAY_STEP each update cycle (during correlation
lag dumps). This register must be re-written prior to each 1 PPS tick to avoid assertion of a delay
update error inMMAP_REG_CTRL_TAP. In the latter case, the delay isnot reset on the 1 PPS tick,
but continues to increment using the previous stride; this allows the value to “coast” via smooth
extrapolation should updated coefficients fail to arrive.

– 14 –

• MMAP_REG_DIG_DELAY_STEP [Digitizer delay step (after 1 PPS)]
The input sample delay increment to apply each update cycle (during correlation lag dumps)after the
next 1 PPS tick. The delay value is reset toMMAP_REG_DIG_DELAY_1PPS on the 1 PPS tick itself.
This register must be re-written prior to each 1 PPS tick to avoid assertion of adelay update error in
MMAP_REG_CTRL_TAP.

• MMAP_REG_TRX_RESET [Transceiver reset]
Each set bit holds the correspondingreceiverlane in hard reset. If all four lanes in a single block are
placed in reset, the entire block (including transmitters) is powered down. Ifall blocks on one side of
the device are in reset, the associated ATX PLL is also powered down.

• MMAP_REG_TRX_CTRL [Transceiver control]
Each byte selects the active transceiver lane or block for eitherMMAP_REG_STATUS_TRX or
MMAP_REG_TRX_DELAY. Only the 5-bit LSBs are used for lane selects (maximum of 32 transceivers
per FPGA); lanes are numbered lower-right to upper-right, then lower-left to upper-left (receive lane
0 is GXB_RX_R0 and lane 31 isGXB_RX_L15). Only the 3-bit LSBs are used for block selects
(each block is four contiguous lanes); block 0 is lanesR0-R3 and block 7 is lanesL12-L15. The
transceiver verification select bit allows manual control of symbol alignment verification; when en-
abled, all pipeline data is replaced by a fixed word alignment pattern expected by the receivers. In
normal operation this bit remains cleared as pattern substitution is controlled automatically (cf. §6).

– bits 31-17:Reserved

– bit 16: Transceiver verification select (manual)

– bits 15-8: Block select forMMAP_REG_TRX_DELAY

– bits 7-0: Lane select forMMAP_REG_STATUS_TRX

• MMAP_REG_TRX_ERROR [Transceiver error status]
Each set bit indicates detection of a transceiver link error on the corresponding lane since the register
was last cleared. Bits stay set until cleared. Detailed link status for a particular lane can be found in
MMAP_REG_STATUS_TRX after settingMMAP_REG_TRX_CTRL appropriately.

• MMAP_REG_TRX_DELAY [Transceiver input delay]
Used for lane alignment; each byte sets the absolute delay (in receive clockcycles) to apply to one
lane in a particular transceiver block 0≤ b≤ 7 (selected byMMAP_REG_TRX_CTRL). The delay is
applied to the raw, 32-bit demultiplexed transceiver input and is unrelated tothe digitizer sample rate
or data demux. Typical transceiver transmit-to-receive latency is about16 parallel clock cycles.

– bits 31-24:Receive delay for laneℓ = 4b+3, blockb

– bits 23-16:Receive delay for laneℓ = 4b+2, blockb

– bits 15-8: Receive delay for laneℓ = 4b+1, blockb

– bits 7-0: Receive delay for laneℓ = 4b+0, blockb

• MMAP_REG_IF0_FREQ [Center frequency 0 (current)]
Reads back the current center frequency of IF segment 0, in units of the sampling frequency, as
a 32-bit fixed-point value (with 32-bit fractional part). The current frequency is usually calculated
automatically fromMMAP_REG_IF0_FREQ_1PPS andMMAP_REG_IF0_FREQ_STEP; however,

– 15 –

writing to this register will override the frequency setting during the next update cycle (correlation lag
dump), after which it will increment as usual.

• MMAP_REG_IF0_PHASE [Phase offset 0 (current)]
Reads back the current phase offset of IF segment 0, in revolutions (units of 2π radians), as a 32-bit
fixed-point value (with 32-bit fractional part). The current phase offset is usually calculated auto-
matically fromMMAP_REG_IF0_PHASE_1PPS andMMAP_REG_IF0_PHASE_STEP; however,
writing to this register will override the phase offset during the next updatecycle (correlation lag
dump), after which it will increment as usual.

• MMAP_REG_IF0_GAIN andMMAP_REG_IF0_OFFSET [Sample gain and offset 0]
These registers define a linear transformation applied to the (18-bit) outputsample stream for IF
segment 0 immediately prior to requantization into final 2-bit, 3-bit, or 4-bit band-limited samples (see
§5.6). The gain is a specially encoded 20-bit limited-range floating-point value, bits 19-16 containing
a half-integer binary exponent (as a fixed-point signed nibble with 1-bitfractional part) and bits 15-0
the mantissa (a 17-bit unsigned, fixed-point mantissa with implied leading 1 and 16-bit fractional part).
Half-integer exponents are approximated as a scaling by 1.5x. For example, GAIN = 0x00000≡ 1
and GAIN= 0x34500≡ 3.80859375. In the current implementation, only half-integer exponents
between -2.0 and +3.5 (inclusive) are supported. The offset is a 20-bit signed fixed-point value with
2-bit fractional part. Both factors occupy the 20-bit LSBs of the register.

• MMAP_REG_IF0_FREQ_1PPS [Center frequency 0 (next 1 PPS)]
The IF center frequency to set at the next 1 PPS tick, in units of the samplingfrequency, as a 32-bit
fixed-point value (with 32-bit fractional part). Afterward the frequency will increment by
MMAP_REG_IF0_FREQ_STEP each update cycle. The supported physical center frequency range
is 1-9 GHz. SeeMMAP_REG_DIG_DELAY_1PPS, which operates similarly, for additional details.

• MMAP_REG_IF0_FREQ_STEP [Center frequency 0 step (after 1 PPS)]
The center frequency increment to apply each update cycle (correlationlag dump)after the next 1 PPS
tick for IF segment 0. The value is reset toMMAP_REG_IF0_FREQ_1PPS on the 1 PPS tick itself.
This register must be re-written prior to each 1 PPS tick to avoid assertion of acenter frequency update
error inMMAP_REG_CTRL_TAP.

• MMAP_REG_IF0_PHASE_1PPS [Phase offset 0 (next 1 PPS)]
The phase offset to set at the next 1 PPS tick for IF segment 0, in revolutions, as a 32-bit fixed-point
value (with 32-bit fractional part). Afterward the offset will increment each update cycle by
MMAP_REG_IF0_PHASE_STEP. SeeMMAP_REG_DIG_DELAY_1PPS, which operates similarly,
for additional details.

• MMAP_REG_IF0_PHASE_STEP [Phase offset 0 step (after 1 PPS)]
The phase offset increment to apply each update cycle (correlation lag dump) after the next 1 PPS
tick for IF segment 0. The value is reset toMMAP_REG_IF0_PHASE_1PPS on the 1 PPS tick itself.
This register must be re-written prior to each 1 PPS tick to avoid assertion of aphase offset update
error inMMAP_REG_CTRL_TAP.

• MMAP_REG_IF1_FREQ to MMAP_REG_IF1_PHASE_STEP [IF segment 1 control]
These registers are the equivalent ofMMAP_REG_IF0_FREQ to MMAP_REG_IF0_PHASE_STEP
for IF segment 1.

– 16 –

• MMAP_REG_IF2_FREQ to MMAP_REG_IF2_PHASE_STEP [IF segment 2 control]
These registers are the equivalent ofMMAP_REG_IF0_FREQ to MMAP_REG_IF0_PHASE_STEP
for IF segment 2.

• MMAP_REG_IF3_FREQ to MMAP_REG_IF3_PHASE_STEP [IF segment 3 control]
These registers are the equivalent ofMMAP_REG_IF0_FREQ to MMAP_REG_IF0_PHASE_STEP
for IF segment 3.

– 17 –

Table 1. CARMA 3G Correlator FPGA Memory Map

Symbolic Namea Hex Addressb Description

MMAP_REG_VERSION 0x00000c FPGA configuration version.
MMAP_REG_CORL_BASE 0x00001c Correlation logic base parameters.
MMAP_REG_CORL_CONF1 0x00002c Correlation logic set 1 parameters.
MMAP_REG_CORL_CONF2 0x00003c Correlation logic set 2 parameters.
MMAP_REG_STATUS_OLD 0x00004c Correlation status of last integration.
MMAP_REG_STATUS_META1 0x00005c Baseline metadata status.
MMAP_REG_STATUS_META2 0x00006c Baseline metadata status.
MMAP_REG_STATUS_TRX 0x00007c Single transceiver detailed status.
MMAP_REG_CTRL_TAP 0x00008c Control bit readback.
MMAP_REG_UNUSED_09 0x00009c Reserved for future use.
MMAP_REG_UNUSED_0A 0x0000Ac Reserved for future use.
MMAP_REG_UNUSED_0B 0x0000Bc Reserved for future use.
MMAP_REG_UNUSED_0C 0x0000Cc Reserved for future use.
MMAP_REG_UNUSED_0D 0x0000Dc Reserved for future use.
MMAP_REG_UNUSED_0E 0x0000Ec Reserved for future use.
MMAP_REG_UNUSED_0F 0x0000Fc Reserved for future use.
MMAP_REG_CONFIG 0x00010 Data processing configuration.
MMAP_REG_STATUS 0x00011 Correlation status.
MMAP_REG_CORL_MODE 0x00012 Correlation/pipeline operating mode.
MMAP_REG_DEMOD 0x00013 Phase-switch demodulation state.
MMAP_REG_IMPULSE 0x00014 Impulse response cycles & sample.
MMAP_REG_TEST_PATTERN 0x00015 Delay/prompt input test patterns.
MMAP_REG_PIPE_SEL 0x00016 Pipeline multiplexer selects.
MMAP_REG_DIG_DELAY 0x00017 Digitizer input delay (current).
MMAP_REG_DIG_DELAY_1PPS 0x00018 Digitizer input delay (next PPS).
MMAP_REG_DIG_DELAY_STEP 0x00019 Digitizer input delay rate (next PPS).
MMAP_REG_TRX_RESET 0x0001A Transceiver reset.
MMAP_REG_TRX_CTRL 0x0001B Transceiver select control.
MMAP_REG_TRX_ERROR 0x0001C Transceiver error status (persistent).
MMAP_REG_TRX_DELAY 0x0001D Transceiver input delay (selected block).
MMAP_REG_UNUSED_1E 0x0001E Reserved for future use.
MMAP_REG_UNUSED_1F 0x0001F Reserved for future use.
MMAP_REG_IF0_FREQ 0x00020 IF segment 0 center frequency (current).
MMAP_REG_IF0_PHASE 0x00021 IF segment 0 phase offset (current).
MMAP_REG_IF0_GAIN 0x00022 IF segment 0 sample gain.
MMAP_REG_IF0_OFFSET 0x00023 IF segment 0 sample offset.
MMAP_REG_IF0_FREQ_1PPS 0x00024 IF segment 0 center frequency (next PPS).

– 18 –

Table 1—Continued

Symbolic Namea Hex Addressb Description

MMAP_REG_IF0_FREQ_STEP 0x00025 IF segment 0 center frequency rate (next PPS).
MMAP_REG_IF0_PHASE_1PPS 0x00026 IF segment 0 phase offset (next PPS).
MMAP_REG_IF0_PHASE_STEP 0x00027 IF segment 0 phase offset rate (next PPS).
MMAP_REG_IF1_FREQ 0x00028 IF segment 1 center frequency (current).
MMAP_REG_IF1_PHASE 0x00029 IF segment 1 phase offset (current).
MMAP_REG_IF1_GAIN 0x0002A IF segment 1 sample gain.
MMAP_REG_IF1_OFFSET 0x0002B IF segment 1 sample offset.
MMAP_REG_IF1_FREQ_1PPS 0x0002C IF segment 1 center frequency (next PPS).
MMAP_REG_IF1_FREQ_STEP 0x0002D IF segment 1 center frequency rate (next PPS).
MMAP_REG_IF1_PHASE_1PPS 0x0002E IF segment 1 phase offset (next PPS).
MMAP_REG_IF1_PHASE_STEP 0x0002F IF segment 1 phase offset rate (next PPS).
MMAP_REG_IF2_FREQ 0x00030 IF segment 2 center frequency (current).
MMAP_REG_IF2_PHASE 0x00031 IF segment 2 phase offset (current).
MMAP_REG_IF2_GAIN 0x00032 IF segment 2 sample gain.
MMAP_REG_IF2_OFFSET 0x00033 IF segment 2 sample offset.
MMAP_REG_IF2_FREQ_1PPS 0x00034 IF segment 2 center frequency (next PPS).
MMAP_REG_IF2_FREQ_STEP 0x00035 IF segment 2 center frequency rate (next PPS).
MMAP_REG_IF2_PHASE_1PPS 0x00036 IF segment 2 phase offset (next PPS).
MMAP_REG_IF2_PHASE_STEP 0x00037 IF segment 2 phase offset rate (next PPS).
MMAP_REG_IF3_FREQ 0x00038 IF segment 3 center frequency (current).
MMAP_REG_IF3_PHASE 0x00039 IF segment 3 phase offset (current).
MMAP_REG_IF3_GAIN 0x0003A IF segment 3 sample gain.
MMAP_REG_IF3_OFFSET 0x0003B IF segment 3 sample offset.
MMAP_REG_IF3_FREQ_1PPS 0x0003C IF segment 3 center frequency (next PPS).
MMAP_REG_IF3_FREQ_STEP 0x0003D IF segment 3 center frequency rate (next PPS).
MMAP_REG_IF3_PHASE_1PPS 0x0003E IF segment 3 phase offset (next PPS).
MMAP_REG_IF3_PHASE_STEP 0x0003F IF segment 3 phase offset rate (next PPS).
MMAP_TAP 0x01000c Start of signal tap RAM.
MMAP_TAP+MMAP_TAP_SIZE-1 0x01FFFc End of signal tap RAM.
MMAP_LAGS 0x02000c Start of lag data for set 1 correlation 0.
· · · 0x02000c Lag 0.
· · · 0x02001c Lag -1.
· · · 0x02002c Lag 1.
· · · 0x02003c Lag -2.
MMAP_LAGS +

2× NUM_PACK × (NUM_LAGS+1) Ameta
d Start of metadata for set 1 correlation 0.

· · · Ameta+0 Prompt input metadata word 0.

– 19 –

5. Digital Signal Processing

The following provides in-depth information on the individual signal processing tasks present in the ‘band-
former’ FPGAs. They are applied to the raw digitized input signals to create the bandwidth-limited outputs
later transmitted to the correlator FPGAs, which compute a complete set of cross-correlation lags for the
selected observing mode. The algorithms are described in order of application.

5.1. Delay Processing

The sample delay line corrects for time delay offsets between individual inputs. Using observations of the
noise source as a reference, it is manipulated by the high-level phase flattening algorithm, which determines
the input delay (and phase) offsets required for all cross-correlation baseline spectra to achieve zero phase.
In normal operation the delay line also includes the bulk signal delay due to physical path length differences
upstream of the noise source (which is injected directly into the IF). Only the relative delay between inputs
is of consequence.

The delay line is split into two major components: a simple whole-sample delay, implemented in FPGA
RAM, and a fractional-sample delay, consisting of a highly-demultiplexed asymmetric FIR filter with reload-
able coefficients. The delay is adjusted on a fast time scale—the 64 Hz correlation lag dump rate—using
delay coefficients computed by a small state machine inside the FPGA, based ona pair of control register
settings (MMAP_REG_DIG_DELAY_1PPS andMMAP_REG_DIG_DELAY_STEP; cf. Table 1). The delay
control registers, updated by the bandformer CPUs once per second,specify the requested total delay (in
samples) and its average rate of change (in samples/s) for the following second, which the state machine
double-buffers and begins to apply once the next 1 PPS signal is received. It incorporates logic to verify that
the delay registers were loaded precisely once between each pair of 1 PPS ticks, and sets a persistent error
indicator should this fail to be satisfied.

The maximum required delay is determined by the physical line length differences in the most extended
array configuration. For CARMA this is the A array, with baselines up to 2 km(7µs geometric delay);
including allowance for optical fiber length disparities and a safety margin, the total delay line requirement
is 20µs. The raw 4-bit @ 20.48 GHz digitized input is delivered to the FPGA core asa 320-bit (demux-by-
80 x 4-bit) @ 256 MHz data bus; the total delay RAM required is 1.6 Mb or at least 12 Stratix IV M144K
memory blocks. The FPGA configurations allocate 20 M144K blocks to the delay line, 30% of the blocks
in an EP4S100G5 device, for a maximum possible delay of 32.7µs. This delay is applied to the raw input
prior to separation into individual complex baseband IF segments (of whichthere are four per bandformer
FPGA); more delay RAM would be required in the latter case due to the complex vs. real data and the
expansion of sample bit-width due to intervening signal processing.

Design of the fractional-sample delay filter in the 3G hardware is greatly simplified by the fact that raw input
consistently undergoes decimation by an order of magnitude or more in creating each IF segment. Thus
applying the sub-sample delay prior to all decimation, but after generation ofcomplex baseband (which
centers the output IF segment on zero frequency), implies that the delay filter need only perform well over
a small fraction of the quantized bandwidth. For the 3G hardware the minimum decimation factor is eight
(1280 MHz bandwidth mode, assuming 20.48 GHz sampling); hence the highest possible complex baseband
frequency isfN/16, wherefN is the Nyquist frequency. In this case, the nominal CARMA delay resolution
requirement of 0.25 degrees (0.0007 samples) per output can be met with asimple 2-coefficient fractional-
delay filter, specificallyyi = (1− δ)xi + δxi−1, where 0≤ δ < 1 is the fractional sample delay and{yi} is

– 20 –

Table 1—Continued

Symbolic Namea Hex Addressb Description

· · · Ameta+1 Delay input metadata word 0.
· · · · · · · · ·

Ameta+2×NUM_META Aqcnt
d Start of quantization counters for set 1 correlation 0.

· · · Aqcnt+0 Sample count for quantization state 0x00.
· · · Aqcnt+1 Cleared.
· · · Aqcnt+2 Sample count for quantization state 0x01.
· · · Aqcnt+3 Cleared.
· · · · · · · · ·

Aqcnt+2×NUM_QCNT1 Asamp
d Start of sample dump area for set 1 correlation 0.

· · · · · · · · ·

· · · 0x02FFFc End of sample dump area for set 1 correlation 0.
MMAP_LAGS + 0x01000 0x03000c Start of lag data for set 1 correlation 1.
· · · · · · · · ·

MMAP_LAGS +
NUM_CORL1 × 0x01000 Alags2

d Start of lag data for set 2 correlation 0.
· · · · · · · · ·

MMAP_FPGA_SIZE - 1 0x3FFFF Top of local FPGA memory.

aDefined in carmacorl CVS file fastsamp/share/src/fastsamp_components.vhd.

bAs seen by the 32-bit external memory interface.

cThese locations (and all tap/lag dump RAM) are read-only.

dCalculable using MMAP_REG_CORL_BASE and MMAP_REG_CORL_CONF1.

– 21 –

0 200 400 600
-0.1

-0.05

0

0.05

Frequency (MHz)

0 200 400 600
-1

-0.5

0

0.5

1

Frequency (MHz)

Fig. 4.— CARMA 3G correlator fractional sample delay filter performance. The top and bottom panels
display wideband frequency and delay responses, respectively. Red, dotted lines show the worst-case errors
over all possible delays; blue, solid lines show the response forδ = 0.2 in particular.

– 22 –

the delayed version of the sample sequence{xi}. The filter coefficients can be derived using the Lagrange
interpolation method. The simplicity of the coefficients makes the filter easy to implement in FPGA logic,
and their symmetry offers additional resource savings—only asinglemultiplication per (baseband) sample is
required to implement the filter! By way of comparison, the previous generation hardware required a large,
80-coefficient fractional-delay filter—partitioned into 128 individual sub-filters—consuming nearly 100%
of the FPGA RAM blocks and fed by a multi-stage state machine interpreting a datastream containing
encoded coefficients and other auxiliary values (Rauch 2008).

The corresponding delay filter response is shown in Figure 4, assuming 20 GHz sampling and 9-bit quan-
tization forδ . Dotted lines indicate the worst-case error envelopes for amplitude and delay response; solid
lines show the response for the concrete exampleδ = 0.200. Most of the phase error—the residual at zero
frequency—is round-off error inδ ; for 8-bit and 12-bit quantization (not shown), the maximum phase error
is 0.46 degrees and 0.11 degrees, respectively. Note that the phase error for coarsely quantized delays can
be reduced by adjusting the phase offset to remove the (known) DC delayoffset. Frequency response is not
affected. To conserve logic, application of this filter is integrated into the creation of complex baseband as
described in the following section.

5.2. Phase Switch Demodulation

Any 180-deg phase switching applied to the analog input signal is removed by negating sample values as
appropriate. This step is performed in conjunction with sample decoding, which converts the asymmetric
10-level sample encoding range[−5,+4] to a symmetric sign-magnitude representation which not only
simplifies future processing, but also removes the DC offset associated with the encoding asymmetry. The
latter, which manifests itself as a strong DC spike in the input spectrum, would otherwise alias into the IF
output spectrum (at a low level) after digital downconversion and decimation.

5.3. Frequency Modulation and Phase Offset

Every bandformer FPGA produces band-limited sample streams for four independent IF segments, each with
their own (possibly overlapping) center frequency and total bandwidth.To support Doppler tracking, the
center frequencies can vary in real time, whereas bandwidth changes (except certain narrowband transitions)
require reconfiguring the FPGAs. Total bandwidth per IF segment can range from 1280 MHz to 2 MHz;
bandwidth choices are based on power-of-two decimation from a common 1280 MHz (for 1280 MHz and
640 MHz modes) or 1024 MHz (for 512 MHz and below) complex baseband. Conceptually, the first step
in creating the complex baseband is to center the IF segment on DC by multiplying the real samples by a
rotating complex phasor; as in the previous correlator, this phasor includes a dynamic phase offset to enable
real-time input phase correction. Due to the very high input data rate, however, practical implementation of
the fractional-sample delay requires that it be integrated into the phasor calculation. This is quite reasonable
both conceptually and operationally since the delay and phase correctionsare closely related and updated
simultaneously.

To center the desired passband on zero frequency and correct forany phase offsets, the raw input sequence
{xk} is multiplied by a counter-clockwise rotating phasor{Φk}, where

Φk = e+i(2π f0k−φ) = cos(2π f0k−φ)+ i sin(2π f0k−φ) ≡ Ak + iBk,

– 23 –

the center frequencyf0 > 0 is in units of the sampling frequency andφ is the input-specific phase correction.
In the CARMA band definition, which uses thee−i sign convention for the forward FFT, this corresponds to
centering the negative-frequency passband on DC while applyingφ in the appropriate sense. The resulting
complex baseband sequence is{zk} = {Akxk + iBkxk}. Applying the fractional delay correction to{zk}

yields the sample series{z′k}, where

z′k = [(1−δ)zk +δzk−1] = 2−D {[

dAk−1xk−1 +2DAkxk−dAkxk
]

+ i
[

dBk−1xk−1 +2DBkxk−dBkxk
]}

,

D is the fixed-point precision (bit-width) ofδ , andd = 2Dδ is an unsigned integer satisfying 0≤ d < 2D.
In practice the scale factor 2−D is ignored, and−1≤ {Ak,Bk} ≤ +1 are similarly replaced with quantized
counterparts−2Q−1 < {ak,bk} < 2Q−1, whereak andbk areQ-bit signed integers. The bandformer config-
urations useD = 8 andQ = 12 and round both the{ak,bk} and{dak,dbk} coefficients to 9-bit values for
caching in RAM blocks (described below). Note that the FPGA numerically controlled oscillator (NCO)
component, which calculates{ak,bk}, will not generate±2Q−1 to avoid saturating theQ-bit integers, even
though the output is mathematically incorrect by a full LSB in those cases.

Support for Doppler tracking places two basic requirements on the digital downconversion. The need for a
dynamic center frequency has already been mentioned. The timescale on which f0 is updated for tracking
purposes is long—currently 8 minutes in the real-time system (RTS). For consistency with the delay and
phase update procedure, however, the FPGA downconversion component allows f0 to change on the lag
dump timescale, with frequency updates once per second and smooth interpolation in between. This requires
little additional logic and permits useful lab tests such as fast (virtual) frequency sweeps. The second
requirement is that the downconversion frequency error,∆ f0 = factual− f0, satisfy|∆ f0| <∼ 0.1 channels in
all bandwidth modes to ensure spectral line observations are not degraded by inter-channel frequency drift.
Satisfying this for the 2 MHz 2-bit mode requires a frequency resolution of500 Hz—a 24-bit dynamic range
relative to fN = 10 GHz; hence the 32-bit frequency control registers are more than sufficient. Note that
other than these requirements, the correlator knows nothing per se aboutDoppler tracking, which remains
an RTS responsibility.

The incoming data at this stage is 4-bit× demux-by-80 @ 256 MHz. Since instantiating 80 NCOs in parallel
would consume excessive FPGA resources, the design instead buffers one full period of NCO output into
FPGA RAM blocks. This requires exacting care to implement in the case of demux-by-80 (and other non-
power-of-two values) because the inherently binary NCO input frequency naturally produces only power-
of-two output periods, incommensurate with the RAM layout required to support the data demux factor (in
the present case, the RAM is 80 elements wide with an arbitrary depth). One way to overcome this would be
to increase the RAM depth so that the total number of elements is the least common multiple of the demux
factor and the NCO output period, so that the output period is an integral number of rows. The minimum
RAM depth (rows) required,R, is determined by the combination of the NCO period in clock cycles,P, and
the input demux factor,M. Conceptually,R is the number of unique values of(M ·k)modP evaluated over
all integersk. The general solution isR= P/G, whereG = gcd(P,M) is the greatest common divisor ofP
andM; hence for the simple caseG = M, R= P/M. The RAM in turn containsO = M/G repetitions of
the NCO output. For example, for an 8-bit NCO frequency the (maximum) output period isP = 256, which
for M = 80 impliesG = 16, R= 16, andO = 5—repeating the 256-cycle output five times in succession
precisely fills 16 rows of 80 columns each. Clearly, however, this solution significantly increases RAM
usage (and the time required to fill it) as compared to a binary-compatible demux factor, by a factor ofO.

A more efficient solution to this problem is to constrain the NCO input frequencysuch that the output period
is closeto an integral multiple of the demux factor. This amounts to instantiating an NCO with sufficient fre-

– 24 –

quency precision such that the frequency error incurred to satisfy thisconstraint is negligible. For the 3G sys-
tem, 32-bit NCO input frequencies are used, providing an ample safety margin beyond the 24-bit accuracy
requirement mentioned above. Constraining the requested center frequency f0 to the nearest supported fre-
quencyf ′0 is done by multiplyingf0 by the number of RAM elements (M ·R= 80·256= 5·4096= 20480),
rounding to the nearest integer, and then dividing by the same factor. In practice the multiply/divide is by
a factor of 5 only as the powers of two are trivial. The result is computed to greater than 32-bit precision.
Note that the constraint calculation occurs in the FPGA itself through the use of components specially im-
plemented to reduce computational complexity, allowing the frequency to be updated dynamically on a fast
timescale (the same used for the delay and phase offset).

The need for high dynamic range in the center frequency combined with a high input demux factor requires
a multi-stage approach for practical implementation. In the final design a second stage of modulation is
applied to output bandwidths of 256 MHz and less to fine-tune the initial, coarser correction. Initial wide-
band downconversion uses a RAM cache allocatingR= 256 rows for each of the{ak} and{bk} sequences,
with individualak andbk values rounded from 12-bit to 9-bit values (sufficient to limit distortion products to
<∼−50 dBm)—thereby consuming (per IF segment) 40 Stratix IV M9K RAM blocks intotal for theak and
bk values. The raw 20-bitdak anddbk delay products are similarly rounded to 9-bit values, consuming an
additional 40 RAM blocks. Each FPGA contains 1280 M9K blocks and processes four IF segments, in total
a 25% M9K utilization by this stage. A state machine re-initializes RAM during each lag dump; to speed
loading, four parallel NCOs are used, for a net reload time of(R∗M/4)/(256 MHz)= 20µs—just below the
phase switch settling time of 21µs. The RAM is filled such that rows are read sequentially in operation. With
these parameters, the maximum center frequency error at this stage is| f0− f ′0| ≤ fN/(R∗M) = 0.500 MHz,
which meets the resolution criterion for output bandwidths of 512 MHz and above. Below this bandwidth
a second stage is applied, adjusting the center frequency by the residualδ f = f0− f ′0. This stage occurs at
low demux and is implemented using the direct output from high-precision NCOs; the maximum frequency
error in these modes is≈ 2 Hz, a velocity error of≈ 1 cm/s for observations at 3 mm.

5.4. Decimation

At this stage the complex baseband signal is reduced from 10.24 GHz to its final bandwidth—ranging from
1280 MHz to 2 MHz—by applying multi-stage digital filtering and decimation. Each stage applies an anti-
aliasing FIR filter to reject out-of-band signal power, followed by simple 2:1or 5:1 decimation (depending
on the filter). See Rauch (2003) for digital filter terminology and Crochiereand Rabiner (1983) and Mintzer
(1982) for theoretical background. Filtering and decimation in the 3G system is designed to maintain the
following criteria over the output bandpass (given ideal input):

• Peak-to-peak bandpass ripple below 0.1 dB.

• Peak aliased noise power below -40 dB.

More specifically, for anN channel spectrum, these criteria are satisfied in the centralN− 4 channels;
hence the two half-width edge channels and one additional channel fromeach edge should be discarded for
maximum signal integrity. The following filter sequences are used to achieve this goal:

– 25 –

1280 MHz: F2, F4x, F5a;
640 MHz: (F2)2, F4x, F5a;

512 MHz: H1, F4x, F5a;
256 MHz: H1, F2, F4x, F5a;
128 MHz: H1, (F2)2, F4x, F5a;
64 MHz: H1, (F2)3, F4x, F5a;

...
...

2 MHz: H1, (F2)8, F4x, F5a;

where eachFn (half-band) andHn (fifth-band) filter is implicitly followed by either 2:1 or 5:1 decimation,
respectively, and(Y)M means the filterY is appliedM consecutive times. Coefficients for these filters are
listed in Table 2. TheF2 filter can be found in § 5.5.2 of Crochiere and Rabiner (1983); the remainder are
optimized filters derived especially for CARMA use and satisfying the listed performance criteria.

5.5. Band Edge Definition

5.6. Sample Gain and Offset Control

Sample processing includes dynamic digital gain and offset control. The gain and offset are specific to each
IF segment and controlled by theMMAP_REG_IF0_GAIN –MMAP_REG_IF3_GAIN andMMAP_REG_IF0_OFFSET
– MMAP_REG_IF3_OFFSET registers. EachGAIN register is a 20-bit binary floating-point value contain-
ing a 4-bit signed exponent (MSBs) and 16-bit unsigned mantissa fraction (LSBs). The complete 17-bit
fixed-point mantissa consists of an implied leading one with 16-bit fractional part (the register LSBs). The
OFFSET register is a 20-bit, signed fixed-point value with 2-bit fractional part. Changes to these registers
take effect immediately. The gain values are used in the calculation ofTsys for each band.

Gain control occurs in two phases. As part of the sample requantization (bit reduction) occurring im-
mediately prior to the final sharp-edged half band filtering stage, multiplication/division by a power of
two—applying the binary exponent inMMAP_REG_IFn_GAIN—is performed on the multi-bit intermedi-
ate samples. The fixed-point gain and offset are applied immediately beforefinal sample requantization (see
§ 5.7) to the incoming, 16-bit band-limited sample streamx as follows:

x→ x′ = (GAIN × x+214 × OFFSET)/216.

Table 2. FIR Filter Coefficients

Filter Expansiona Coefficients

F2 2.00 {1, 2, 1}
F4x 4.81 {-1, 0, 7, 12, 7, 0, -1}
F5a 6.17 {1, 0, -4, 0, 17, 28, 17, 0, -4, 0, 1}
H1 4.65 {1, 2, 3, 4, 5, 4, 3, 2, 1}

aBit expansion of filtered samples (output minus input bit-widths).

– 26 –

This two-stage approach maximizes both dynamic range and precision while limitinglogic usage. (Note
that to further conserve logic, the actual range and precision processed by the configuration may be less than
that allowed by the register specification; see the register definition for the supported limits.) The gain and
offset may be set as desired, but are normally used to achieve an optimal output sample mean and standard
deviation.

The multi-bit input to these stages are normally close to Gaussian, as expectedby the central limit theorem;
however, detailed agreement will vary with the number of intervening stagesand distribution of the raw
input samples. The target mean,µ, is always zero; the standard deviation,σ , is set to maximize the weak-
correlation detection efficiency of the requantized samples. The precise value ofσ is not critical here as
the multi-bit input (≈ 16 bits are available) is requantized to many fewer bits following this stage; typically,
multi-bit full-scale corresponds to∼ 6σ once requantization thresholds have been optimized.

5.7. Sample Requantization

After gain and offset renormalization, the final band-limited output is requantized to 2-bit, 3-bit or 4-bit
samples; each corresponds to a unique FPGA configuration and hence areconfiguration is required to change
it. Using fewer bits decreases cross-correlation detection efficiency but offers higher spectral resolution for a
given bandwidth. The formal detection efficiencies are 87.24% (2-bit), 96.26% (3-bit), and 98.36% (4-bit);
for details of the quantization schemes, see Appendix B of Rauch & Salter (2012). Spectral resolutions
for each are given in Tables 3-5 below. The output of this stage comprises the data samples to be cross-
correlated.

A set of quantization state counters is attached to the requantized sample stream and read out as part of the
lag dump cycle. They are used to monitor sample statistics and to determine the optimalgain/offset values
for each IF segment. Statistics of the raw, undecimated ADC samples are also calculated to support ADC
thresholding and end-to-end gain calibration.

6. Data Transport and Synchronization

In the 2G correlator, data is transferred from digitizer to correlator boards via synchronous LVDS links. As
a consequence, complete delay correction of a data stream to a reference can be done at a single location—at
the source, in the digitizer—with the guarantee that all copies of the stream received by the correlator boards
will arrive with zero relative delay (i.e., in alignment with all other delay-corrected data streams). Hence
delay correction is a local, pair-wise operation.

In the 3G correlator, all transport of sample data (and metadata) occurs via asynchronous, point-to-point
serial links. This adds another layer of complexity to delay alignment as correction at the source (the band-
former) is generally insufficient. Correction is now a distributed, global operation involving all data copies
and reception points—naive alignment to a reference on one correlator board does not ensure alignment on
any other. This consideration applies equally to inter-bandformer data exchange, required to collate fixed-
input, multi-band data bundles into multi-input, fixed-band outputs (all correlations calculated by a single
FPGA board being limited to one IF segment). This fact complicates the phase flattening algorithm in the
3G system as compared to the (already intricate) 2G implementation.

To facilitate synchronization, the 3G system (unlike the 2G system) supplies each FPGA board with a PPS

– 27 –

signal aligned unambiguously to the PLL reference clock used to generatethe FPGA core clocks. Each
bandformer board uses this PPS tick, registered in the core, as a local phase reference for synchronizing
(resetting) rotating phasor states and metadata counters. Correlator boards use the PPS reference embedded
in bandformer pipeline metadata to align the incoming bandformer data streams, ensuring every correlator
card aligns inputs equivalently in spite of the asynchronous nature of transceiver communications. As a
consequence, the existing 2G phase flattening algorithm can be reused once all correlator boards have been
aligned internally—significantly easier than performing a fully global delay analysis. Note that since the
PPS signal is not aligned inabsolutetime between bandformer boards, input delay settings determined by
phase flattening now include a contribution due to inter-board PPS skew.

To help ensure data integrity the 3G system contains three levels of pipeline verification:

(1) The low-level transceiver links employ 8b10b encoding, whose status is monitored continuously to
detect physical transmission errors such as broken links, loss of data lock and parity violations.

(2) During each phase switch settling interval, every link undergoes a period of symbol alignment verifi-
cation to ensure that the 32-bit parallel data sent to the core arrives with the correct byte ordering (and
value). The phase switch rate is 1024 Hz.

(3) Also every phase switch cycle, pipeline metadata received by the correlation logic is examined for self-
consistency, providing an end-to-end data integrity check (metadata is populated by the bandformers
at the head of the pipeline).

Failure of any of these checks leads to automatic invalidation of all affected correlation data during the
next lag dump. The error status is reset automatically after the lag dump is read(when correlation status is
cleared).

7. Correlation Logic

In the 3G system, each correlator FPGA calculates many baselines (up to 24;see §3), with 1/3 less FPGA
logic allocated per baseline compared to the previous system. This translates directly into a 1/3 loss in
channel resolution, all other things being equal. To reclaim as much resolution as possible, the correlation
logic in the 3G system was significantly redesigned to increase its logic efficiency. The two major areas
of improvement are (1) resource sharing between baselines; and (2) RAM-based lag counters. As shown
in Figure 2, in the new system each input appears in several of the baselines calculated by a single FPGA.
This allows some components to be shared between baselines, reducing overall logic usage. In particular,
the input delay lines needed to compute high lag numbers were moved to a new high-level component,
corl_block, which manages the resources for an arbitrary rectangular array of baselines. This arrange-
ment saves approximatelyQ bits of registered logic per lag, whereQ is the sample quantization bit-width.
An input mux selecting either data samples or test samples for correlation was also raised tocorl_block,
on average reducing the resource usage for this feature by a factor of five.

The most significant change made to the correlation logic was to replace logic-based lag counters with
RAM-based lag counters. In the narrowband modes (bandwidths less than 100 MHz), use of this feature
reduces registered logic by over a factor of two, removing it as a resource bottleneck. This most benefits the
2-bit sample modes, which exhibit the highest ratio of registered to combinational correlation logic. In the
new design (thelag_cache component), multiple lag counters are stored in a single medium-sized (M9K)

– 28 –

FPGA RAM block managed like a ring buffer. A simple state machine continuouslyreads individual lags
from RAM, increments them if their (buffered) carry-in bit is set, and thenwrites them back into RAM. For
reliable results, the number of lags stored in a single RAM block cannot exceed the minimum period between
carries. The latter is regulated by maintaining a small ‘prescaler’ lag counterin logic, which accumulates
carries from the multiply-adder (which can emit them as frequently as everyclock cycle). During lag
dumps, the prescaler counter is read out along with the RAM-based counter, allowing counter bits to be split
between them arbitrarily. Increasing the number of prescaler bits decreases the carry-in rate to the RAM-
based counters, allowing more lags to be stored in a single RAM block (decreasing RAM requirements) at
the expense of additional logic cell utilization. A 5-bit prescaler was foundto provide the optimum balance.

A small change in 3G correlation logic behavior compared to previous iterations is the calculation of one
additional positive (more precisely, non-negative) lag for cross-correlation baselines, as compared to the
number of negative lags. This enforces full positive-negative lag symmetry which supports normal-ordering
baseline inputs in lag space through exchange of positive and negative lags (with subsequent discard of the
final, most positive lag), at the cost of∼ 1% increase in logic usage.

Estimated 23-input (single-polarization) channel resolution for each supported bandwidth mode and quan-
tized sample bit-width are given in Tables 3-5. Note that channel counts refer to the raw, unsmoothed
spectra produced by the correlator and include the phaseless, half-width end channels; the spectra output
by the RTS pipeline (beyond the scope of this document) may differ depending on any applied smooth-
ing/decimation/calibration. Spectral line bandwidths are based on power-of-two reductions from a com-
mon, wide bandwidth. Resolutions for the 46-input (full-Stokes) observing modes are precisely half that
of the corresponding 23-input mode; resolutions in split 15-input/8-inputsubarray modes are identical to
the 23-input values (the same FPGA configurations are used). Note that due to inter-FPGA communication
limitations, the 1280 MHz mode is available with 2-bit quantization only.

Because one bandformer FPGA calculates four independent IF segments, each with a (possibly) differ-
ent bandwidth, supporting an arbitrary mixture of the available bandwidth modes would require thousands
of unique FPGA configurations and numerous months of CPU time to generate them. A broad but lim-
ited mixture of bandwidth choices was implemented to balance this consideration, as follows. First, each
bandwidth mode is classified as either wide (1280 MHz), intermediate (640 MHzto 128 MHz), or narrow
(64 MHz to 2 MHz). By special design all narrow modes are created by a single bandformer component
offering dynamic (i.e., runtime) bandwidth selection—hence an arbitrary mixture of narrowband modes can
be supported. The complete selection of (four) simultaneous bandwidth modesin a single FPGA consists
of all possible combinations containing (at most) one specific intermediate bandwidth component, multiple
copies thereof being permissible. Aside from that restriction, wide, intermediate, and narrow modes can
be mixed arbitrarily. Table 6 lists these combinations systematically usingW for wideband (1280 MHz),
I for intermediate (anysinglebandwidth in the range 640 MHz to 128 MHz—eachI is the same) andN
for narrowband (any set of bandwidths from 64 MHz to 2 MHz—eachN can be different). For example,
{1280,1280,128,32}, {256,256,256,8} and {1280,128,32,8} are all supported combinations, whereas
{256,128,32,8} is not. For single-polarization observations eight simultaneous observing bands are avail-
able; although the first four and second four bands must separately satisfy the preceding restrictions, they
are completely independent of each other.

Lags are transferred from the FPGA to the crate CPU at a 64 Hz rate. Themaximum data volume per baseline
is 432chan×2lags/chan×4bytes/lag= 3.5KB (in 23-input mode) and thus the maximum transfer rate per
FPGA is 24bl× 3.4KB/bl× 64Hz= 5.3MB/s. There are 8 FPGA boards per chassis; hence the data

– 29 –

Table 3. Estimated CARMA 3G correlator spectral resolution [2-bit samples]

Bandwidth Channelsa δF δV[3 mm] Vtot[3 mm] δV[1 mm] Vtot[1 mm]
(MHz) (per sideband) (MHz) (km/s) (km/s) (km/s) (km/s)

1280 53 24.6 74 3840 25 1280
640 93 6.96 21 1920 7.0 640
512 97 5.33 16 1536 5.3 512
256 161 1.60 4.8 768 1.6 256
128 289 0.444 1.3 384 0.44 128
64 433 0.148 0.44 192 0.15 64
32 433 0.074 0.22 96 0.074 32
16 433 0.037 0.11 48 0.037 16
8 433 0.019 0.056 24 0.019 8
4 433 0.009 0.028 12 0.009 4
2 433 0.005 0.014 6 0.005 2

aRefers to the raw, unsmoothed correlator spectra (half-width end channels included).

Table 4. Estimated CARMA 3G correlator spectral resolution [3-bit samples]

Bandwidth Channelsa δF δV[3 mm] Vtot[3 mm] δV[1 mm] Vtot[1 mm]
(MHz) (per sideband) (MHz) (km/s) (km/s) (km/s) (km/s)

640 49 13.3 40 1920 13.3 640
512 53 9.85 30 1536 9.8 512
256 97 2.67 8.0 768 2.7 256
128 161 0.800 2.4 384 0.80 128
64 289 0.222 0.67 192 0.22 64
32 289 0.111 0.33 96 0.11 32
16 289 0.056 0.17 48 0.056 16
8 289 0.028 0.083 24 0.028 8
4 289 0.014 0.042 12 0.014 4
2 289 0.007 0.021 6 0.007 2

aRefers to the raw, unsmoothed correlator spectra (half-width end channels included).

– 30 –

Table 5. Estimated CARMA 3G correlator spectral resolution [4-bit samples]

Bandwidth Channelsa δF δV[3 mm] Vtot[3 mm] δV[1 mm] Vtot[1 mm]
(MHz) (per sideband) (MHz) (km/s) (km/s) (km/s) (km/s)

640 17 40.0 78 1920 40 640
512 19 28.4 63 1536 28 512
256 37 7.11 19 768 7.1 256
128 73 1.78 4.7 384 1.8 128
64 129 0.500 1.5 192 0.50 64
32 129 0.250 0.75 96 0.25 32
16 129 0.125 0.38 48 0.13 16
8 129 0.063 0.19 24 0.063 8
4 129 0.031 0.094 12 0.031 4
2 129 0.016 0.047 6 0.016 2

aRefers to the raw, unsmoothed correlator spectra (half-width end channels included).

Table 6. Supported Spectral Bandwidth Combinations

{W,W,W,W} {I , I , I , I} {N,N,N,N}

{W,W,W, I} {W,W,W,N} {W, I , I , I}
{I , I , I ,N} {W,N,N,N} {I ,N,N,N}

{W,W, I , I} {W,W,N,N} {I , I ,N,N}

{W,W, I ,N} {W, I , I ,N} {W, I ,N,N}

– 31 –

volume per CPU is≤ 43 MB/s. For the correlator as a whole, the maximum possible correlation data rate
into the pipeline is 8bands×2sides×276bl×3.5KB/bl×2Hz≈ 31 MB/s.

8. FPGA Development Environment

8.1. CVS Repository Layout

All FPGA development code resides in thecarmacorl project within the CARMA software CVS tree
athttp://cvs.mmarray.org/. The top-levelcarmacorl directory contains several sub-directories
organized by hardware revision, includingcobra (first-light correlator based on COBRA hardware),revised

(second-generation CARMA correlator) andfastsamp (third-generation, fast-sampler hardware). Each
of these in turn contains sub-directories corresponding to FPGA configuration type:bandform (for band-
former),correlator (for correlator) ordigitizer (for digitizer). Note that in some cases a partic-
ular FPGAboard type (digitizer or correlator) may be functionally re-purposed to act as the complemen-
tary board type by loading the corresponding FPGA configuration. In particular, in the second-generation
CARMA correlator über-digitzer boards (those loaded with higher-density 130K Stratix II FPGAs) were
used as spare correlator boards in the running system. Similarly, in the third-generation hardware, a single
physical FPGA board type serves interchangeably as either a bandformer or correlator board depending on
which FPGA configuration is loaded.

All custom FPGA components are written in VHDL. A number of Altera IP modules, or megafunctions—
notably the NCO (numerically controlled oscillator) and (for second-generation hardware) FIR (finite-
impluse digital filter) components—are also used in the configurations. For themost part, however, config-
urations use full-custom VHDL components developed specifically for usewith CARMA hardware. This
continued bottom-up development over the lifetime of the facility extracts maximum benefit from each
hardware generation, with FPGA device utilizations of 80-90% common in production configurations.

Note that developing “specifically” for CARMA does not mean “exclusively,” as the configurations and
numerous components they contain have also been highly parameterized (using VHDL generics) to facil-
itate re-use. In the 3G system, use of Altera’s own FIR (II) compiler was replaced with a newly devel-
oped C++ program (firgen, in theshare/fpga/test directory) capable of auto-generating VHDL
FIR filter components given their coefficient sets, with superior configurability (including generics for in-
put de-multiplex, bit-width, and decimation factor) and quality of results (for the 3G bandformer filters,
roughly half the logic usage) compared to Altera’s solution. The FIR filter componentsHB79_P0.vhd,
HB159_P0.vhd, etc., located in thefastsamp/bandform/src directory, were generated by this pro-
gram and contain comments documenting the correspondingfirgen arguments and filter coefficients.

8.2. FPGA Configuration Testing and Verification

Configuration development involves two basic stages, high-level RTL (logical, register-based) simulation
and place-and-route of configuration bitfiles that can loaded into an FPGAdevice for in-situ verification.
RTL testing is done using a set of TCL scripts written for the Mentor GraphicsModelSim simulator. The
place-and-route is done using Altera’s Quartus II, optionally pre-processed by Mentor Graphics Precision
RTL Synthesis tool, in both cases also via custom TCL scripts. TCL scripts reside in the corresponding
scripts sub-directory of each configuration and also rely on common shared functions located in higher-

– 32 –

levelshare/scripts directories.

To run a ModelSim simulation, from the Modelsim TCL prompt, one first changes to the appropriate con-
figuration directory, sources the simulation script, and runs the simulation selecting parameters appropriate
for the desired configuration. The following lists a sample ModelSim session simulating a 4 x 1280 MHz
bandwidth bandformer configuration for 10 microseconds:

ModelSim> pwd

/home/rauch/astro/carmacorl

ModelSim> cd fastsamp/bandform

ModelSim> source scripts/sim.tcl

...

###

Simulation options:

> ’rtl BANDWIDTH CONFIG NPACK QBITS FREQ DELAY PHASE MODE NLAGS’

> ’ptiming ...’ initializes a pchip (Precision-synthesized) timing sim.#

> ’qtiming ...’ initializes a qchip (Quartus-synthesized) timing sim.#

###

ModelSim> rtl 1280 0xAAAA

...

#

This RTL simulation is for 1280 MHz bandwidth (cf = 0xAAAA, qbits = 2 ...

VSIM 3> run 10us

...

*
* Reset FPGA; waiting for corl_doneN [t = 674 ns]

Write 00011h: 00000000

*
* Reading configuration registers:

Read 00000h: 002B2A00

Read 00010h: AAAA1000

VSIM 4>

The ModelSim command window displays text reporting the progress and results of various self-tests ex-
ercising different parts of the configuration. The simulation script also generates a waveform display or-
ganized by major components—such as transceiver I/O, correlation logic,etc.—which graphs the cycle-
by-cycle state of many internal signals. Figure 5 displays the waveform window resulting from this run,
with the digitizer input signal block opened to show individual signal transitions. Results are written to
configuration-specific directories in thedb/mwork sub-directory of the configuration working directory.

RTL simulations depend on the (automatically controlled) generation of simulation libraries for Altera-
provided IP components, as well as thecontrol andcontrol_lib packages derived from files within
the dwh/work/vhdl CARMA CVS repository (referred to as thecontrol directory in TCL scripts,
as the tree contains needed system controller interface logic). Pathnames tothese modules must be set

– 33 –

appropriately at the top ofshare/scripts/common.tcl; the QUARTUS_ROOTDIR environment
variable must also be properly set. The corresponding libraries of simulation components are cached in
$CARMACORL/sim_lib.

Synthesis of the FPGA configurations can be performed either wholly in Altera Quartus II, or in Mentor
Graphics Precision Synthesis, in which case Quartus is used only for the place-and-route and later stages
(timing analysis and bitfile generation). In comparative testing, use of Precision Synthesis often produced
configurations achieving greater density but somewhat lowerfmax than Altera’s synthesis tool. For the
2G hardware a mix of both was used to strike the best balance, with certain components (particularly
the multiply-adders) black-boxed in Precision Synthesis to force synthesisof those components to occur
in Quartus when the latter produced superior results. For the 3G configurations, incorporating Precision
Synthesis into the flow was found to be of little advantage, and a larger numberof components required
black-boxes either to avoid compatibility issues with Altera IP or to maximize the qualityof results. The
following is a sample Quartus synthesis run performed within the TCL console of the Quartus GUI, for the
same 4 x 1280 MHz bandformer configuration simulated above:

Quartus II Tcl Console

tcl> pwd

/home/rauch/astro/carmacorl/fastsamp/bandform

tcl> set blist 1280

tcl> set clist 0xAAAA

tcl> source scripts/synth.tcl

... [two hours later] ...

==

P&R for 1280 MHz bandwidth (CONFIG_NUM = 0xAAAA) complete.

==

tcl>

The output files for each configuration reside in a sub-directory ofdb/qwork whose name includes the
output IF bandwidth, configuration sub-setting, re-quantized sample bit width and fitter random seed value—
in this case,db/qwork/1280_AAAA_2_7.

As the synthesis/place-and-route sequence takes a considerable amount of time—a couple hours per FPGA
configuration—and hundreds of individual FPGA configurations are required to support the full range of 3G
correlator band setups (see § 7), the synthesis scripts provide support for generating multiple configurations
in an automated, hands-free manner. The aboveblist andclist settings can be lists of values for the
set of bandwidths and configuration numbers of the configurations to be generated. Other values one can
specify from the top level includeqlist (re-quantized sample bit widths) andslist (initial fitter ran-
dom seeds, for exploring the design space). The script can also be run outside the Quartus GUI, from the
UNIX command line, via thequartus_sh executable. The$CARMACORL/share/scripts/synth
front-end script automatically creates a wrapper script forquartus_sh to generate a large series of config-
urations, with error-checking and automatic re-synthesis of failed configurations (due to tool crashes, fitter
problems, or failure to meet timing). This front-end was valuable in automating synthesis in the 2G system
(a complete set of configuration requiring 1 month of CPU time to generate) andthe CPU requirements are
several times greater for the 3G correlator FPGA configurations.

Meeting timing is most difficult for the 3G bandformer configurations due to the very wide input data
(demultiplex-by-80) coupled with a relatively high clock rate (256 MHz). Inthis case multiple fitting at-
tempts using different random seeds and other options available in the Quartus II Design Space Explorer

– 34 –

were of some help. Reducing the number of IF sub-bands per bandformer (via theNUM_IF top-level
generic) from the nominal target of four per chip, thereby reducing overall logic congestion, is another
way to improvefmax (albeit at a loss of overall bandwidth capability). For the 4 x 1280 MHz bandformer
configuration, timing was met in test configurations retaining all four sub-bands.

Testing of bandformer configurations included the generation of digitizer input test vectors which the RTL
simulations read from a disk file, process in the FPGA as ordinary digitizer input to create fully digital-
downconverted, delay/phase-corrected, bandwidth-limited and re-quantized output sample streams that were
compared to expected output sample vectors produced by an independent, high-level C++ program,firsim
(located in theshare/fpga/test directory). This program produces results bit-accurate to the FPGA
signal processing, but coded using a simpler mathematical representation toimprove confidence (as opposed
to literally re-creating the more convoluted FPGA computations, which risks injecting subtle mistakes into
both calculations). AMakefile in thefirsim directory includes targets to compile the program as well
as generate series of test vectors for different generations of CARMA correlator hardware. This closed-loop
procedure has proven extremely effective over multiple hardware generations in producing digital filtering
chains free of unexplained anomalies and unwanted numerical artifacts. The filtering test flow is however
somewhat labor intensive to keep in sync as a single-cycle latency changewithin the VHDL design will com-
pletely alter the literal sequence of numerical values output by the bandformer component, even though the
new results are spectrally identical to the original. Note the issue is not just a bulk change in output latency,
whereby the same output values simply appear on a different clock cycle than previously. Rather, an internal
change in decimation phase, though mathematically irrelevant, will produce acompletely independentset
of output samples that differ quantitatively from the output vectors produced byfirsim, making direct
comparison impossible. Rectifying such cases requires manually examining intermediate signal outputs in
the bandformer RTL waveform and adjusting phase parameters for the corresponding filter(s) infirsim to
realign output phase with the latest VHDL code. Doxygen documentation (and aDoxyfile configuration
file) for firsim (andfirgen) is included with the source files.

A major new feature of the 3G hardware is the use of high-speed serial linksfor all ADC-to-FPGA and
inter-FPGA communication. As described in § 6, the 3G FPGA configurations implement a new multi-
tiered communication protocol to ensure end-to-end data integrity. Thetrx_reset VHDL component (in
fastsamp/share/src) implements a state machine managing full reset of transceiver channels, includ-
ing automated re-synchronization of data links during the verification phase(repeated each phase switch
cycle) upon detecting a loss of data lock or other errors. These features were tested in live hardware using
an Altera DE4 development board containing a Stratix IV GX FPGA. The board incorporates a number of
connectors attached to the FPGA transceivers, including several SATAports and PCIe lanes. By connecting
these ports in a loop-back configuration, the newly-developed transceiver components were tested for reli-
ability using full-speed inter-FPGA mode links (6.40 Gbps). The testing including physically unplugging
cables from the board and verifying successful link re-negotiation andpipeline data alignment when the
cable was re-inserted, a worst-case scenario. Figure 6 displays the (simulated) waveforms of a transceiver
lane being transitioned from an unaligned to an aligned state by the reset statemachine (which manages
each serial link individually).

– 35 –

Fig. 5.— ModelSim waveform display, 3G bandformer configuration.

Fig. 6.— ModelSim waveform display, 3G transceiver data lock progression.

– 36 –

REFERENCES

Crochiere, R., and Rabiner, L. 1983,Multirate Digital Signal Processing(Englewood Cliffs: Prentice-Hall),
Chapter 5.

Hawkins, D.W. 2012,Terasic TS Series Development Discussion,
http://www.ovro.caltech.edu/~dwh/wbsddc/terasic.pdf

Mintzer, F. 1982,On Half-Band, Third-Band, and Nth-Band FIR Filters and Their Design, IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 30, no. 5, pp. 734-738

Rauch, K.P. 2003,Digital FIR Filtering Options for CARMA Digitizers, CARMA Memo 12.

Rauch, K.P. 2008,Revised CARMA Correlator FPGA Configurations, CARMA Memo 46.

Rauch, K.P., and Salter, D.M. 2012,Blank Sky Analysis and Statistics, CARMA Memo 57.

