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ABSTRACT

The effects of point-spread function (PSF) mismatch has been investigated.
Centroiding errors can be divided in two categories: 1) due to pixel integration
in the central region where PSF gradients are large, and 2) at larger distances
where the PSF gradients are smaller. A metric has been developed to quantify
the effects of #2. Simplified model PSFs have been used to study the effects of
pixel-integration.

Using an “analytical perturbation” to a symmetric Gaussian PSF, it is found
that deviations at the percent level in its central region cause well-reproducible,
systematic, centroiding errors of order several milli-pixel. This is caused by the
integration over the width of the pixel, and is true even if the true PSF is sym-
metric. These results are consistent with recent studies reported by Anderson &
King (PASP, 2000, 112, 1360). As a result, the RMS centroiding errors for under-
sampled PSF's are of order 1 mas, or about twice larger than FAME’s design goal
of 1/350" of a pixel. Thus, it is imperative to accurately determine the PSF,
whatever the color of the star. Astrometric results are independent of the color
of the stars as long as there are sufficient stars to provide detailed measurements
of the PSF as a function of the myriad (time-varying?) parameters. This may be
a problem for blue stars. The pixel-phase bias is a strong function of PSF width.
For the non-Gaussian PSFs investigated in this memo, the pixel-phase bias is all
but gone for FWHMaxima larger than about 1.7 pixels.

The large-scale centroiding error can be estimated to have magnitude of dxq =
(PSFyye(r) — PSFy5eq(x)) X z, where PSF(z) is the area-normalized PSF, and
x the distance from the true centroid. The FAME requirement will be achieved
when x X §PSF(z) < 1/350. Thus, at large distances, the template PSF must
match the actual PSF to better than 1 part per 350, or better.

An very nasty problem has been discovered in the errors introduced by discrete
nature of the linear A/D conversion scheme. I estimate that A/D conversion
contributes a value of gain/18 to the reduced x? values, or about 8 for a V=9.001
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star. Such large x? would “normally” indicate that the centroiding is bad, with
100% likelihood. As far as I am aware, there are no statistical tools available to
handle such situations adequately. Several remedies exist for this problem: 1)
using a linear 14 or 15 bit A/D converter, 2) employing a >10-bit square-root
A/D converter, 3) observe all the bright stars (V' € (9,13]) in 2D, 12-bit linear
mode, 4) invent a new? statistical tool to handle digitization drop-outs.

1. Introduction

Monet & Zacharias report a strong systematic behavior of the centroiding precision as
a function of pixel-phase (¢;). I find very similar behavior employing the code that I used
to determine the photometric precision. This memo presents an analytical and numerical
investigation into the reasons for this pixel-phase behavior. I also present some estimates for
the number of required observations to reach FAME’s astrometric goals.

2. The Works

To first approximation, the centroid z( of a function PSF is given by the value of its
first moment:

% PSF(a")x'd!

[, PSF(a!)dx! 1)

Zo

The difference between the centroid of this function and another, PSF', is given by:

520 / PSF(')dy = / (PSF(2') — PSF'(2/)]o'dy’ = / SPSF(a'ds  (2)

where we dropped the integration limits and assumed that both functions have the same total
number of photons. As the PSF looks roughly like a sinc-function, it has a approximately

Gaussian core and some weaker wiggles to the side, and possibly some asymmetries.

There are two regimes where it is easy to make large contributions to dzo: 1%*) at large
distances, small §PSF(x') values result in large centroiding errors, 2"?) large §PSF(x')
values at small distances also have large effects. Few photons land at large distances, so that
the determination of the PSF is difficult for large . Because of the under-sampling, the
gradients in the PSF are large in the central pixel and a half: a slight mismatch between
true and assumed centroid of the PSF results in large 0 PSF'(z) values, and hence substantial
centroiding errors.

It is thus imperative to minimize the effects of cases #1) and #2). The central PSF
gradients can be minimized by using a somewhat wider PSF (see below). The effects at large



-3 -

distance must be controlled by the design of the instrument, by making the wings of the PSF
stable and predictable. Here is why. Let us consider the case that the PSF is perfectly well
established, except for a position z pixels away from the centroid. Assuming S(z) photons
in pixel number z and a total of Sy,; photons, eqn. 2 leads to the following condition:

dzg ~ Z(Smo(x)

_ Zxas(x) N Zx\/S(:v) -

Stot Stot

Employing equation 3, I find that it produces numbers that are very close to the numerical
simulations reported below. By plotting dzo(z) as a function of pixel position, it is evident
that the pixels with the largest gradients contribute most to the centroiding error. However,
their relative contribution decreases as the width of the PSF increases. This confirms the
hand-waving argument based on eqn. 1 above. Further, experimentation shows that an
additional Gaussian “perturbation” several FWHM from the centroid adds substantially to
the centroiding error. However, a wider PSF reduces this effect. For example, when placing
15% of the total counts in a two peaks £3 pixels from the centroid, the 2"¢ peaks contribute
twice as much to 0z, as does the central 85% of the flux!.

Equation 3 could be used as a metric to define the quality of the PSF. It is well suited
to quantify “distant” pixels, but since it does not take biases due to pixel-phase effects into
account, equation 3 only works for PSFs with FWHMZ> 1.5 pixels (see below).

2.1. Point Spread Functions

My approach in rather naiver than that of Monet & Zacharias in that I do not try to
mimic the true FAME PSF in too much detail. Instead I use three different models: 1) A
purely Gaussian PSF, 2) a Gaussian PSF that is integrated over the width of a pixel, and 3)
a low-order Gauss-Hermite PSF. It can be shown that the second PSF corresponds to the
convolution of a Gaussian and a top-hat function. The disadvantage of this approach is that
it does not approach reality. On the other hand, the simplicity of the above PSFs make them
amenable to some analytical rigor. The area-normalized PSF's employed are parameterized
as follows:

1 1 2
PSFLG = G(.’E) = 6—2((z—w0)/0) (4)

o\ 21

'If the secondary peaks are at constant offset in pizels, their contribution decreases with PSF width. If
their distance scale with PSF width, their contribution to dz is independent of FWHM.
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TH(z) = Heaviside(z + 3) — Heaviside( -1
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PSFygp = TN YIS ZhH (8)
Hy(z) = %m ~3) 9)
Hia) = 5 B3+470" -3) (10)

where o is the dispersion? of the Gaussian and erf(z) is the error function®, and y = (x —

0)/o. The top-hat function is defined as: TH(z) =0, 3,1 for |z |> 3, |z|= 5 and |z|< %
respectively. Obviously, neither PSFy rp.¢ nor PSF;qp can be equal to some Gauss1an
function (G) with some other values for the peak and dispersion. Figure 1 shows that the
maximum difference between G(z) and PSF, rg.q(z) is of order 1%. In the left-hand panel,
the FWHM of the Gaussian is 1.05 pixels, whereas the pixel-integrated PSF is about 20%
wider. For the right-hand panel, I used FWHM ;=1.42 pixels and FWHM, 75.5=1.56 pixels.
The widths of the functions displayed in these figures were chosen to more-or-less match the
range of PSF widths delivered by FAME. Only a small range of pixel values is displayed to
emphasize the residuals. Note that these curves are not pixelized.

2.2. Centroiding

The centroiding procedure works as follows: for each pixel-phase* tried (30 in total),
50 random® stellar images® are generated. Each model is then digitized using a 12-bit
digitization stage. Three gain settings were used: gl=650k/4096=158.7 for V € [9,10),
g2=g1/2.512?=25.1 for V € [10,11) and g3=g2/2.5122=3.98 for V € [11,18]. As it turns

2For a Gaussian function, the full width at half maximum is given by: FWHMg ~ 2.3548 ¢

Serrf(z) = 2//7 [ exp —t*dt

4Following Anderson & King (2000), the pixel-phase is defined as: ¢, =z — int(x + 0.5). As a result, ¢,
is zero when the PSF falls exactly on the center of a pixel. Negative ¢, means that the PSF is centered to
the left of the pixel center. The PSF is centered exactly between two pixels for ¢, = +0.

5Poissonian shot noise and 7 e~ read noise added

6The peak of the Gaussian is given by: P = 650k x (FW HM/1.414) x 2.5129=V)e~. This sums up to
950k electrons for a V=9 star.
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out, digitization does not greatly influence the astrometric results. However, the statistical
properties (reduced x?) are strongly influenced by digitization (see § 3 below). This fact
will be of crucial importance for any decision tree that is to discriminate between single and
multiple systems.

The astrometric “measurement” process consists of fitting a Gaussian function to the
noisy, digitized profiles (using the Levenberg-Marquardt Method). Then, at each magnitude,
the RMS centroiding error is defined as the second moment of the distribution of true minus
fitted centroids, for all 30x50=1500 models. Note that the standard non-linear least squares
techniques employed assumes that the errors are Gaussian. Thus, the individual errors
returned by the fitting algorithm may be biased as the true errors are a combination of
Poissonian shot-noise and Gaussian read-noise. These differences are subtle (< 20% for the
current experiment) but important for any decision tree that will discriminate between single
and multiple systems.

2.3. Centroiding Results

The astrometric results for the four PSFs described in §§ 2.1 are summarized in figure 2.
In each panel, four curves are presented. The drawn lines are the results of numerical
simulations described above, The dotted lines are photon-statistics extrapolations from V=9.
As reported in my photometry memo, the astrometric precisions in the photon-noise limit
are astonishingly small if the template PSF that is used to fit the data is exactly equal to
true PSF that was used to generate the data (black lines). Also, the Gaussian-Gaussian
case follows the photon-statistics predictions well. However, this is not the case when a
Gaussian template function is used to fit the non-Gaussian PSF, rp.c (red lines): stars
brighter than V=12 show essentially the same centroiding precision. Note that this leveling
off is significantly stronger for narrow PSFs (left panel) than for better sampled cases (right
panel)”. Consequences, causes and cures for this bias will be discussed below.

When fitting a Gaussian PSF with a Gaussian template, the limiting centroiding preci-
sion is 0.106 (0.136) mas for a FWHM of 1.055 (1.414) pixels (for a 9" mag star): when the
template and PSF match, very good precision can be achieved, even when only one pixel
spans the width of the PSF. In fact, figure 2 indicates that at V=9, the attainable precision
exceeds the FAME requirement of 1/350™ of a pixel (0.59 mas) by a factor of about five, and
that photon-statistics pushes the astrometric precision above the design goal around V=12.

7 For the PSFz,TH*G case I find: (5.%'0,1”'@3 ~ —71.31-91.95 XFWHMg-{-QQ.Gl XFWHM(Z; or | 61’0,MAX ~
12, 7, 2.5, 0.7, 0.05 milli-pixel for FWHM¢=0.94, 1.05, 1.23, 1.41, 1.64 pixels, respectively.
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2.4. The Bias

Figure 2 also shows that the centroiding precisions for the PSF; vy, case are factors
9.7 and 1.27 worse than for the case that the true PSF is Gaussian for the FWHM presented.
Given the relation between the centroid bias and the PSF width (see footnote 7), I find that
the FAME requirement of 0.59 mas centroiding can be achieved if the FWHM is larger or
equal than 1.23 pixels®, if the true PSF is given by PSFyrpg.q-

Above we have seen that a 1% mismatch between the actual and template PSF results
in a centroid bias that is 9.7 times larger than what can be achieved when PSF and template
match. A simple-minded linear scaling implies that photon-statistics centroiding precision
can be reached if PSF and template match to within 0.1%. Extrapolating linearly, FAME
statistics would be achieved in case the template-mismatch would be less than 0.5%.

2.4.1.  Other Consequences Of The Bias

In figure 4, I present plots of the centroiding precision as a function of pixel-phase in
the top panels. The thin black and red lines show the results of Gaussian fits to PSF; ¢ and
PSFy 1w, respectively. While the PSF,  errors hover around zero, the PSFy 7. results
show a strong pixel-phase dependent behavior: the “bias.” As a result, the rms centroiding
error is very large when averaged over all ¢,, and is in fact dominated by the bias. At
fainter magnitudes, the magnitude of the bias is overwhelmed by the variance introduced
by photon-statistics. This bias does not result from shot noise because the no-noise results
(continuous thick red line) follows the with-noise results (jagged thin red line). The bias is
also not caused by the digitization of the signal since the no-noise case show the same bias
whether it is digitized (left-hand panels) or not (not shown).

We conclude that the pizel-phase bias is caused by PSF-template mismatch. In order to
achieve the FAME centroiding requirement it is of crucial importance that FAME’s actual
PSF can be measured to 1 part in 500 or better. If the correct PSF is used to measure
the stellar “images,” no bias is present. As we have seen, this is so for the Gaussian-
Gaussian case. The same results are obtained when PSF; 1. stellar images are fitted with a
PSFy ru. point-spread function (cf. eqn. 6). These results are not shown. Makarov reports
(private communications) similar findings for a PSF that resembles the worst Lockheed PSF
at A = 400 nm.

An alternative to fitting the data with a derived true PSF could be to fit Gaussians

8The precision will decrease again if FWHM is made too large, as 6zo o« FWHM?3/? in the photon-
statistics limit: for this example, FWHM¢ < 5.8 pixels.
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to the observed stellar images and derive the bias empirically and iteratively correct for it.
Since the centroiding bias is such a strong function of pixel-phase, it should be possible to
determine it. A complication is that there are two pixel-phases that have exactly the same
centroiding bias. An arbitrary non-Gaussian PSF may even be multi-valued.

At first it seems that this multi-valuedness poses a problem in determining the true
pixel-phase. However, when “centroiding” we not only estimate the position, but also the
peak and width of the stellar image. The fits for these parameters are displayed in the
middle two panels of figure 4. From these panels it is clear that the bias-¢, degeneracy will
be broken if peak and/or width measurements are included.

2.4.2. Gauss-Hermite Polynomials

I have experimented with other non-Gaussian PSFs from the Gauss-Hermite (GH) fam-
ily (cf. eqn. 8), which differ in normalization from those described by Makarov (FTM2001-2)
but conform the the practice of workers in the stellar kinematics community. A nice illus-
tration of how GH point-spread function look like can bee found in Binney & Merrifield
(Galactic Astronomy, 1998, p 702). In essence, positive (negative) hs parameters produce
an asymmetry on the right (left) side of the centroid. Positive h4’s result in PSFs that are
more “wingy,” while negative h4’s produce PSF's that are less wingy than Gaussians. The
pixel-values of GH PSF's with non-zero h;—3 4 terms differ from Gaussians at the ~ h; level.

Experimentation with these GH functions shows that, for small A;, the pixel-phase bias
can be written as a low-order Fourier series: O—C ~ ag(hs, FW HM)+a.(FW HM)h; cos (¢,m)—
as(FW HM )hysin (2¢,7) with ag ~ 0.0, a. ~ 1.8 and as; ~ 1.5 for FWHMg=1.055. For
under-sampled images, the systematic bias due to the even h, term is zero when averaged
over pixel-phase, with as a net effect an increase of the scatter. Due to its cos(¢) depen-
dence, the bias due to a positive (negative) hy term will not average to zero, but will be
systematically positive (negative). Note that the coefficients describing O — C all depend on
the width of the function, and that the constant term has an additional h3 dependence (all
in a non-transcendental manner).

The FWHM-dependence of the centroiding bias is illustrated in figure 3. Here I summa-
rize the results for Gaussian fits to a PSF ¢, a PSF, rp.«.c and a series of GH PSF’s. This
figure clearly indicates that the bias decreases with PSF width. Note that none of the tested
PSFs have second humps, so that this experiment only describes the “close-in” centroiding
effects.

Thus, the behavior of the bias for a GH PSF is very different from that of the pixel-
convolved Gaussian used above. In the latter case, the non-Gaussianness of PSFyrp.q



— —

decreases with increasing FWHM because the pixel-integration effect is less important. This
also the case for the symmetric (h4) part of the GH PSF, but not for the asymmetric term:
the hjz bias just increases as the PSF grows fatter. These results also imply that, since
the bias depends on the shape and width of the PSF, it will be as hard to
determine the bias as it is to determine the PSF.

For FWHM=1.055 (1.414) pixels, in order to just meet the FAME requirement, | h3 |
has to be smaller than 0.004 (0.016) and | hy |< 0.002(0.008), if a Gaussian is used to fit
those GH PSFs. That is to say, PSF knowledge of order several tenths of percent is required,
as was the case for the PSFy ry.¢ discussed above. Again, if a GH template is used to fit
GH stellar images, all biases and systematic effects disappear.

2.5. Bias Explained

The PSF's presented in figure 1 hold the clue for the true cause of the bias. Consider the
left-hand panel of this figure. The cyan curve is the difference between the true PSF; ry.q
and a Gaussian that fits this PSFy best. This O — C' curve is the basis for explaining
the behavior of the pixel-phase systematics. To see this, consider the pixel-phase ¢, = 0

11

situation. In this case, the central pixel ( ) “covers” the O — C curve symmetrically. The

202
first right-side pixel (3, 3) contains as much flux as the first left-side pixel (2, —1), et cetera.
Thus, in this case, the centroid would be identical zero. Similar arguments for the case that

the star is located exactly between pixels also lead to zero bias for ¢ = j:%.

Taking ¢, = 0.2, the left-hand plot of figure 1 shows that the pixels centered -1.8, -0.8
and +0.2 have O — C' ~ 0, while the +1.2 pixel has positive flux of ~ 0.005. The result is
a positive centroiding bias, as observed in left-hand panel of figure 2. For the wider PSF in
the right-hand panel, the asymmetries are much smaller, and when one slides a pixel array
across the O — C' curve, no astrometric biases are evident: consistent with figure 2.

3. Nasty Digitization Effects

Since the PSFy 1. and the GH PSFs are definitely non-Gaussian, it is expected that
a Gaussian fit to non-Gaussian PSF's should result in a poor fit, statistically speaking. As a
function of pixel-phase, magnitude and PSF model, I calculated the reduced x? values:

=13

¢ = o> (o-aETm) (1)

with O; and C; the observed and computed counts, r the read-noise, and v the number
of degrees of freedom (v = 13 —4 = 9). The results are plotted in the bottom panels of
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figure 2 for the PSF rpy.¢ (thin red curves with error bars) and PSF¢ (thin black lines
with error bars) cases. In these panels we see that indeed the reduced x? values differ
from the expected value of unity, and that x? is largest in the region with the largest bias:
X2(¢z) ~ 60. Thus, template-PSF mismatch can be identified in regions where the reduced
x? values are large. On the other hand, x? can reach 15 for the case that a Gaussian PSF is
fitted with a Gaussian template. That is to say, a reduced x? value of 15 is not an indicator
of template-PSF mismatch.

The arguments presented above indicate that even if we somehow know the true PSF, it
is still possible to obtain a reduced y? of about 15. In “normal” circumstances, such values
would indicate that it is highly unlikely (Probability < 1.3107%%) that the stellar image
resembles the template PSF, possibly due to the presence of a cosmic-ray, an electron trap
or a visual binary. Above we saw that this need not be the case. These results pose severe
problems for the interpretation of FAME astrometry since “normal” statistical tools can not
be used to compare data and fits.

Which x? values are “good” is determined by three factors: 1) the shape of the true
PSF, 2) the brightness of the star and 3) the pixel-phase. This effect is illustrated in figure 5
(the FWHM=1.414 equivalent of figure 4), where the shape of the Gaussian-Gaussian x?(¢,)
curve has changed substantially, while the maximum amplitude is still very large (10; P ~
2107'%). Experimentation with GH PSFs yields similar results. Thus, in order to employ
reduced x? in the normal fashion, a criterion has to be developed that tells us whether a
given x?2 is “good” or “bad.” Again, such criterion will depend on my, PSF and ¢, not
only on a comparison between data and model (and errors). To my knowledge, this state of
affairs in not handled properly by commonly used statistical tools.

3.1. x? Explained

In fact, it is quite odd that the Gaussian-Gaussian fitting yields such horrendous statis-
tics. It turns out that this is due to the way the pixel data is digitized. The reduced x?
values for no-noise Gaussian-Gaussian cases (thick black lines) are: 15, 6, 1, 0 for 12, 13, 14,
15 bit linear digitization, respectively. Since there is no template-mismatch nor any noise,
in the G-G case, the reduced x2 should be zero. The observed large positive values must
be attributed to digitization effects. For the no-noise digitized PSFs 7. case, X,Q, decreases
when more bits are used (50 at 12, 40 at > 13 bits). Thus, largest contribution to reduced
x? values for PSF, ra..q is due to template-mismatch, not digitization.

On the up-side, a 14 or 15-bit linear A/D converter, would allow us to use standard
statistical tools to analyze the FAME data. On the down-side, 15 bits/pixel require at most
25% larger data rate and requires an A/D converter that may or may not be available. If
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Table 1: Digitization effects illustrated for a Gaussian function with FWHM=1.414 pixels and
a peak of 650k electrons. The Gaussian is centered at ¢, = 0.4. Position, flux and vflux are
listed in the first three columns. The digitized quantities in the subsequent columns. First
for 12-bit linear digitization with gainy 158.7 and followed by 12-bit sqrt digitization with
gaing 0.1968. The equivalent linear digitization step for the sqrt-scheme digitization scheme
is tabulated in the last column

T F, | VF, | ADUL Fir, | Nap | X3, || ADUs Fas | Nas | X35 || gaing
-6.0 0.000 | 0.000 0 0.000 7.0 | 0.00 0 0.000 7.0 0.0 0.04
-5.0 0.000 | 0.000 0 0.000 7.0 | 0.00 0 0.000 7.0 0.0 0.04
-4.0 | 1.4E-6 | 0.001 0 0.000 7.0 | 0.00 0 0.000 7.0 0.0 0.04
-3.0 | 0.0692 | 0.263 0 0.000 7.0 | 0.00 1 | 0.0387 7.0 0.0 0.11
-2.0 218.1 | 14.77 1 158.7 14.4 | 1.88 75 217.9 16.3 0.0 5.84
-1.0 | 42.72k | 206.7 269 | 42.69k | 206.7 | 0.00 1050 | 42.71k | 206.8 0.0 81.37

0.0 | 520.5k | 721.5 3280 | 520.5k | 721.5 | 0.00 3665 | 520.4k | 721.4 | 0.0 || 283.9
1.0 | 394.2k | 627.8 2484 | 394.2k | 627.9 | 0.00 3190 | 394.3k | 627.9 | 0.0 || 247.1

2.0 | 18.57k | 136.3 117 | 18.57k | 136.4 | 0.00 692 | 18.55k | 1364 | 0.0 | 53.64
3.0 | 5437 | 7374 0| 0.000 7.0 | 6.70 37 53.04| 101 | 0.0 2.90
4.0 | 0.0099 | 0.099 0| 0.000 7.0 | 0.00 1| 0.0387 70| 0.0 0.11
5.0 | 1.1E-7 | 3.E4 0| 0.000 7.0 | 0.00 0| 0.000 70| 0.0 0.04
6.0 | 0.000 | 0.000 0| 0.000 7.0 | 0.00 0| 0.000 70| 0.0 0.04

at this point it is still possible to consider an alternative A/D converter, it is worthwhile
to consider a non-linear A/D conversion scheme. In the right-hand panel of figure 4, I
present the pixel-phase results for the case of 12-bit square-root digitization. In such a sqrt-
digitization scheme, the square-root of the data value rather than the data value itself is
digitized. Such a scheme allows for a full recovery of the astrometric precision (not shown).
Furthermore, the reduced y? values are virtually identical to the case of > 16-bit linear
digitization. The reason for this is as follows. In any digitization scheme, pixels with less
electrons than half the gain will be rounded to zero. A pixel with readout noise r (=7 e™1)
and observed counts just below gain/2 will have “O-C” of %gain and will thus contribute to
reduced x? a value of:

1/ 0-0))\ N gain®
s ()~ we (12

where the noise value N could equal gain/2 or 0.0, depending on whether is is calculated
from the computed model or the data values, respectively. If the read-noise is small and
model noise values are used, eqn. 12 reduces to: x? = gain/(2v). Which, and how many
pixels satisfy this “half-way” criterion depends on the detailed shape of the PSF and the
pixel-phase. Since it is the digitization that matters, narrow and broad PSFs will have
similar ranges of digitization-induced reduced x? values.

Consider the 12-bit linear digitization of a V=0 star with FWHM=1.414, P=650k e,
and a digitization step of gain; = 650k/4096 = 158.7 e~. The noise values for “computed
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noise” and “observed noise” are: Ng = y/gain;/2+ 7> = 14.4 and No = 7. Thus, the
respective reduced x” values are: i, = 1/9 x (158.7/2/14.4)> = 3.3 and X, = 1/9 x
(158.7/2/ 7.0)> = 14.3. In my numerical simulations I estimate the noise based on the
observed count rates, not on computed model values, and I thus expect to see reduced x?
values of order 15. This expectation is borne out by the results presented in figure 5. In
table 1, T present, as an example, the relevant quantities as a function of pixel position.
Columns 2 and 3 are the computed flux (F.) and the square-root thereof. Columns 4-7
tabulate the 12-bit linear digitized values (ADU;, = ROUND(F,./gainy)), the estimated
original flux (Fy, = ADU,, * gainy), the estimated noise from the digitized counts (Ng; =
VFur +7%), and Xoar (=1/v X ((Fe— Fqr)/Nar)?)- The equivalent quantities for square-
root digitization are tabulated in the subsequent columns.

Inspecting table 1, it is clear why square-root digitization does not produce large reduced
x? values. With a gaing of 0.1968, the low count-rate regime is digitized with steps of
gain% ~ 0.039, so that the maximum contribution per pixel to x? is very small indeed
(0.02/9). The astrometric precision is actually somewhat better when using 12-bit sqrt
digitization because the linear flux step that is made at all sqrt digitization levels is always
about 37% of the noise (cf. the last and second-before last columns of table 1). For linear
digitization, the noise is comparably well digitized at flux levels > (3 x gaing)? ~ 220k, for
the bright stars. Only two points listed in table 1 satisfy this criterion.

Finally, since sqrt-digitization more faithfully follows the data at low flux levels, more
pixels will have non-zero ADU values than in the linear case, so that more data points are
available so that better fits can be obtained. Because the sqrt-digitization scheme uses steps
that are related to the noise, it does a better job at characterizing the data and the noise.
As a result, the digitization errors are small so that standard statistical tools can be used to
analyze sqrt-digitized FAME data.

Because the digitization error is of order gain/2, linear digitization works best for faint
stars that employ lower gain settings. For FAME, the second and third gain settings are
2.512? and 2.512* times smaller than the first (g, ~ 25,93 ~ 4 and P prax ~ 100k and
P prax ~ 16.4k). This leads to x2 biases of 12/9=1.33 and 2/9=0.222 per half-way pixel,
respectively. This is consistent with my numerical simulations. In 2D FAME postage stamps,
peak fluxes are of order 100k electrons so that g, = 25. Thus, the digitization effects on
the image statistics will be 12/9 rather than 79/9 x2 units per half-way pixel. On the other
hand, in a 2D image, more pixels will have a chance to collect ~ go/2 electrons.
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3.2. Solutions to the digitization problem

Several solutions are suggested for the digitization-induced x? problem:

1. Use a 14 or 15-bit linear A/D converter

Requires a new A/D; 25% more data will be generated
2. Use a 10 or 12-bit sqrt A/D converter (preferred from data-analysis perspective)

Requires a new A/D
3. Observe all 2M stars brighter than V=13 in 2D mode.

This is disastrous for the data rate
4. Observe stars brighter than V=13 in 2D mode, use 12-bit linear digitization. To limit

the data rate, perform marginalization of the digitized 2D image and use a 12-bit sqrt
compression of the marginalized data.
(best results for smallest change wrt current design)

This s a complex scheme
5. Use a 15-bit linear followed by a 12-bit sqrt compression

Requires: new A/D, and compression software
6. Develop a fitting scheme that utilizes the digitization drop-outs below the gain/2 level

(least desirable)
Requires specialized software

The first five fixes are rather unattractive as they require a substantial change of the current
design. However, doing nothing and hoping that a ground-based software fix will be found
might be worse: this issue needs immediate attention.

In the maximum-likelihood parameter estimation method, the errors are determined
from the model rather than the observed values. In this case the digitization errors are
mitigated, but are still significant for the bright stars. One could construe the following
fitting scheme: 1) a model is estimated without the 1™ “zero-count” pixel on either side of
the maximum, (this will change the width of the PSF and move the true centroid) 2) the
“zero-count” pixels are checked for digitization-dropout effects. This is a dufficult process as
it is not obvious how the “zero-count” pixels can be determined and how exactly the PSF
width and location will be affected by the digitization dropouts. As explaned above and
illustrated in figs. 4 and 5, these effects depend sensitively on the PSF.

4. PSF Construction

In the Tycho-2 catalog, there are about 8,000 to 12,000 stars per d(B-V)=0.1 with
V=[8.5,11.5]. It is those stars that will be used to determine the empirical PSFs. Fainter
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stars can be used as well, but they increase the “information” only by a factor of three or so
(since the number of photons received per magnitude bin is approximately constant). So let
us assume that we 20,000 stars —half of which are binaries— per color bin. Each star will yield
5 pixels of useful information, so we get 20k/2*5=>50k data points. Each CCD will observe
these stars 1000/24 times, so we have 2 million observations per star-group per CCD.

Now suppose that we have to live with the worst case, that a PSF needs to be determined
for each of the 2048 rows per CCD, that yields 1k observations per row. Also suppose that
the PSF has to be determined 10 times during the 2.5 years (= every 3 months = twice
between eclipse seasons). The result is 100 “observations” per row. Since the apparent PSFs
will vary with in-scan smearing, we need possibly 5-10 in-scan smeared PSF's, leading to
10-20 observations per PSF.

One could use these 10-20 observations to fit a GH function to the data to determine
10-20 constants per PSF, or 1 observation per GH term: a rather underwhelming number.
Alternatively, one might split these 10-20 observations between between the 5 pixels that
make up the PSF, or 2-4 independent samples per pixel per PSF. We are in trouble if the
PSF needs to be determined as a function of sub-pixel location. A wider PSF would help in
that it reduces the required number of GH-terms/sub-pixel-locations.

This problem can be solved in several ways: 1) use the fainter stars as well to yield
3 times as much “information,” 2) live with an intrinsically worse astrometric accuracy for
these rare (blue) stars, 3) make sure that the PSF is so well behaved that redder stars
can be used as a template for the rare blue stars 3a) have better optics, 3b) de-focus to
FWHM 2 1.4 pixels, 3c) have more in-scan smearing, 3d) cut out “blue” light. These
options are listed more-or-less in order of desirability. As discussed earlier and shown in
figure 3, we could live with a bit of additional “smearing” since even with FWHM=4.9, we
have §x¢=0.459 mas (1/449" pixel) at V=9 and photon statistics beyond to dzy=8.4 mas
at V=15.

5. Conclusions

Centroiding errors arise from two regimes: 1) pixels close to the maximum where the
PSF gradient is large, and 2) distant pixels that sample the wings/humps of the PSF. The
first source of error can be significantly reduced by employing a wider, better sampled, PSF.
The contribution due to distant pixels can be reduced by “better optics, ” of fewer “bad
photons,” or both.

Linear digitization on a 12-bit scale of the FAME data produces unanticipated, very
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large reduced x? values. This problem can be solved in several ways. A ground-based
statistical correction in software is anticipated to be very complicated. If at all possible, an
in-flight software and/or hardware solution is preferred.

This investigation has benefitted substantially from conversations between the author
and Valeri Makarov, Arsen Hajian, Marc Murison. George Kaplan, Norbert Zacharias and
Dave Monet.
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Fig. 1.— The template PSF (a true Gaussian [G(z), black]), the true PSFyrp.c (red)
and the Gaussian (G(z)) that matches the true PSF as close as possible [G(z), green]. I
also display the difference between é’(x) and PSF>ru.c (cyan). The left-hand panel is
for FWHMg ~ FWHMg x 1.21 ~ 1.05 x 1.21 ~ 1.27 pixels, the right-hand panel for
FWHMg ~ FWHMg x 1.1 ~ 142 x 1.1 ~ 1.56 pixels. The residuals in both panels are
of order 1%, independent of the width of the PSF (I've tested up to FW H Mg=4 pixels).
That is to say, there is NO Gaussian that will perfectly well fit PSF, rp.q-
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Astrometric accuracy <--> Magnitude; 12-bit LINEAR digitization  Astrometric accuracy <-—> Magnitude; 12-bit LINEAR digitization
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Fig. 2.— Astrometric precisions as a function of apparent magnitude for true PSF of FWHM
1.05 & 1.41 pixels (left & right, respectively). The thick horizontal line is the FAME require-
ment for astrometry: 1/350% of a pixel ~ 0.59 mas.
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Fig. 3.— Astrometric precisions as a function of the width of the PSF. In all cases, a
Gaussian was fitted to the true PSF. For the latter I present: a true Gaussian (thick black
line), a pixel-integrated Gaussian (thick dashed line) and a series of GH PSF's (colored lines).
The top panel is for Ay = 0 and non-zero hs (increasing from left to right). The bottom
panel for A3 = 0 and non-zero hy.
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Pixel-Phase Effects, V= 9.00 ; 12-bit Linear Digitization Pixel-Phase Effects, V= 9.00 ; —12-bit SQRT Digitization
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Fig. 4.— Several astrometric parameters as a function of pixel-phase ¢,. From top to bottom
the panels display: the fitted centroid, the variations in peak flux, the profile width and the
reduced x?. The black lines are for PSF; = G(z), the red lines for PSF, rp.g. The PSF,
results show the smallest systematics. In the top three panels, the thin lines represent one of
the 50 random realizations, whereas the thick lines are the results for the no-noise profiles.
For the x?2 plot the thin lines represent the mean of 50 random models. The expected fitting
errors are also displayed in the profile-peak and profile-width panels. For the left-hand set
of panels, all data was digitized using a 12-bit, linear digitization scheme before fitting.
The right-hand set of panels was digitized using a 12-bit, square-root algorithm digitization
(except for the no-noise case [thick lines]). Comparing the x2 panels, it is clear that the
linear digitization scheme introduces very large (15) reduced x? values, even in the case that
both fitting template and the PSF are Gaussians (thick black lines). Square-root digitization
behaves much better.
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Fig. 5.— Same as for figure 4 but for FWHM;=1.414 pixels. Note that the pixel-phase
effects on the “astrometric” parameters are much smaller. The lower panels show that the
reduced x? values are about twice weaker. However, the G-G case (thick black lines) produces
still unacceptably large x2.



