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ABSTRACT

I present a semi-analytic method to estimate the number of extra-solar giant

planets (ESGPs) that can be detected at a given confidence level (Nσ) by future

astrometric missions. Specifically, I present the cases for OBSS-A, GAIA and

OBSS-B. As expected, the number of detected ESGPs is a strong function of

astrometric accuracy. I present a prescription that allows for the determination

of the relative numbers of ESGPs as a function of mission parameters.

Missions such as GAIA or OBSS-A can discover roughly 28,300 systems at

the Nσ ≥ 5 level and “determine orbits” (Nσ ≥ 15) for 3,200 systems. Although

the confidence level is only three times larger for orbit determination, only one

in nine of the detected systems will have Nσ ≥ 15.

For OBSS-B, with 2.2 times worse astrometry, the numbers are 6,100 at the

Nσ = 5 level, and 510 at the Nσ = 15 level, or 4.6 and 6.2 times smaller numbers

than for OBSS-A/GAIA.

Independent of mission specifics, most ESGPs will be detected around M-

type stars, if the planet frequency is independent of stellar mass: 54% [77%] for

OBSS-A/GAIA and 70% [86%] for OBSS-B at the 5-σ [15-σ] level.

Independent of the parameters of the planetary system, most detectable ES-

GPs have periods of about 0.82 times the mission duration.

As might be expected, most ESGPs will be detected at bright magnitudes:

brighter than V ≈ 15 [V ≈ 13] for detection at the 5-σ [15-σ] level for K- and

earlier type stars.

1. Introduction

Several distance limits play a role in figuring out how many extra-solar giant planets (ES-

GPs) can be detected by an astrometric mission. I present a self-consistent semi-analytical

framework that describes the chances of detection for all orbital periods and mass ratios.
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The results are presented in six figures and six tables for the OBSS-A/GAIA and OBSS-

B mission parameters. The former missions are assumed to have mission-end astrometric

accuracies of 10 µas, while OBSS-B would reach 22 µas.

Since the number of detectable ESGPs (NESGP ) is proportional to the number of parent

stars, NESGP will be proportional to the volume that is “accessible” by the observational

capabilities of a given astrometric mission. The better the astrometric accuracy, the more

distant stars can be probed for planetary systems. Because the volume is roughly propor-

tional to the third power of the distance, NESGP will be a strong function of the limiting

distance (astrometric accuracy).

I discuss the various distance limits in section 2. In section 3, I present an analytical

framework that allows for the determination of the limiting distance for given parameters of

the planetary system and the mission parameters. Subsections 3.2 and 3.3 present the ESGP

probability density distribution from Tabachnick & Tremaine (2002) and the procedure to

estimate the actual number of expected ESGPs, respectively. In section 4, I present a

methodology that allows one to estimate the relative performance of missions with differing

levels of performance.

2. Distance Limits

2.1. Photometric Distance

Given a stellar type (mass) with a given absolute luminosity one can “see” the star to

the following distance:

dMV (V ) = 10(+0.2∗(V −MV +5)) [pc] (1)

where V is the apparent magnitude and MV the absolute magnitude.

Given the presence of a floor level for astrometric accuracy of δX0 for all apparent

magnitude brighter than Vf , it makes sense to choose as a limiting magnitude the faintest

magnitude that yields astrometric uncertainty of δX0,f . For an OBSS-A or GAIA incarnation,

δX0,f ∼ 10 µas. However, the floor magnitude depends on spectral type because: 1) red stars

have more photons per unit energy than blue stars, 2) more photons result in better accuracy.

For A5V, F5V, G5V, K5V and M2V stars, these floor magnitudes are: Vf=14.0, 14.10, 14.20,

14.44 and 14.75 mag which correspond to limiting distances of 2630, 1319, 661, 256 and 89

pc, respectively1. However, as I will show below, it turns out that these distance limits may

be substantially relaxed for the later type stars.

1These and other auxiliary stellar parameters are also listed in table 5.
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Understanding the planet-detection capabilities of a given mission is most easily accom-

plished by looking at circular orbits. For such systems, the geometry is straight forward

so that analytical expressions can be easily derived. While these analytical expressions are

known to be incorrect, they are a reasonable first order estimate. For systems with elliptical

orbits, similar effects occur that change the details of the predictions, but not the order of

magnitude of the effect. The number of observable ESGPs depends on the volume in which

the astrometry is sensitive enough to pick up the wobble induced by the ESGP. The volume

being proportional to the cube of the distance, the number counts are reliable to within a

factor of ∆d3, where ∆d is error on the distance.

2.2. Astrometry of Binary Systems

With these limitations in mind, I start with the standard expression of the semi-major

axis of a binary system:

a = (a1 + a2) = Π [(M1 + M2) P 2
yr]

1/3 =
1000

d

(

MT P 2
yr

)1/3
[mas] (2)

a2 = a
M1

MT
and a1 = a

M2

MT
=

1000

d

(

Pyr

MT

)2/3

M2 (3)

and

a1,PL =
1000

d

(

Pyr

MT

)2/3

MPL [µas] (4)

Here a, a1, a2 and the parallax (Π) are expressed in in the same unit (e.g., mas), while d is

the distance in units of pc. The sum of the masses (MT ), as well as the primary (M1) and

secondary (M2) are in units of solar masses, and the orbital period (Pyr) is in years. The

semi-major axes of the orbits of the primary and the secondary are a1 and a2, respectively.

The semi-major axis induced by a planetary mass (MPL, expressed in Jupiter masses) is of

order one-thousand times smaller, so that the units of eqn. (4)] are 1000 times smaller [i.e.,

µas]. For circular motion, the sky positions as a function of time is given by:

x1,2 = a1,2 cos (2π t/P + φ) (5)

y1,2 = a1,2 sin (2π t/P + φ) cos i (6)

where φ is the phase, and where I have chosen the orientation of the coordinate system such

that the y axis is foreshortened by the cos i-factor due to the inclination (i). To analyze and

parameterize the effects of “binary” motion, I use three regimes of t/P , where the companion

may be a star, brown dwarf of planet. First, for mission durations (TM) much longer than

the orbital period, the photocenter orbits many times around the center of mass during the

mission. The distance limit I infer from this criterion is the “photocenter distance,” which I
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work out in §§ 2.3 in more detail. In this case, so as to be able to recognize the system as

being binary, one needs to resolve the semi-major axis of the (photocentric) orbit.

In the second regime, the orbital period is much larger than the mission time so that

the orbit can be reasonably well approximated as a parabola [i.e., x(t) = x0 + vxt + 1
2
v̇xt

2,

where x0 is the position at time t = 0, and the velocity vx and acceleration v̇x are essentially

constant during the mission duration]. Traditionally, this is the method employed to discover

“binaries” (e.g., Kaplan & Makarov, 2003, AN, 324, 5, 419), and I have used this method in

my previous reports. However, this approximation is less relevant because this approximation

is only valid for periods much longer than the mission duration, while I expect (see below)

that most detected ESGPs will have periods similar to TM . Therefore, I have investigated

the intermediate regime and use the results in this memo.

The third regime is intermediate between the two cases, and is a little harder to treat,

but nevertheless doable. The principle of the method is to describe the stellar positions by a

constant proper motion model (neglecting paralactic motion). The quality of the fit is then a

measure how well the observed motion can be represented by the linear model. Rather than

quantifying the quality of the fit by χ2, I choose as a metric the rms-size of the residuals

after the linear model has been subtracted from the observations. A star can then be flagged

as a possible binary when the inferred position errors are substantially larger than those of

its peers of similar apparent magnitude and number of observations.

The implementation of this method is based on Monte-Carlo simulations of the orbits,

and works as follows: 1) For a large number of τ = TM/P values I randomly pick an orbital

phase φ and inclination i, 2) I then select several 100 “observing times” between t = 0 and

t = tM and calculate the x(t) and y(t) coordinates, with the y positions foreshortened due

to inclination, 3) For each of the coordinates separately, I fit a linear relation to the time-

coordinate data to determine the proper motions along the two directions, 4) I then rotate

the coordinate system such that the spatial coordinate (z) coincides with the direction of the

average orbital motion [x = z cos θ, and cos θ = vx/
√

v2
x + v2

y], 5) if vx > vy, I project the x

coordinates onto the z-axis, otherwise I use the projection of the y-axis onto the z-axis to

generate a [t, z(t)] data set, 6) I fit a linear relation to the z(t) data and subtract this linear

relation of the z(t) data values, and finally, 7) the metric that is indicative of significant

binary motion is the RMS (σz) of the difference between the “observed” and fitted z(t)

points.

Although this metric is hard to describe analytically, it is easy to implement numerically.

Also, it has the advantage that it “works” in the very short period, the very long period

regime as well as for intermediate periods. However, this metric is not equivalent to orbit

fitting, rather it is an indication as to whether the residuals with respect to a linear-motion
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model are indicative of binarity. Unfortunately, σz is not a simple function but it can be

approximated to reasonable accuracy [±0.2% (2.6% peak-to-peak)] as:

ζ(τ) ≡ σz(τ)

ai

≈ γ ×
[

1 − e−
1
2
(τ/0.67)2)

]

for τ ≤ 0.75 (7)

ζ(τ) ≡ σz(τ)

ai
≈ γ ×

[

1 − e−
1
2
[(τ+2.74)/1.90]2)

]

+ 0.28
cos (1.30 π τ)

1 + τ 4
for τ > 0.75 (8)

with γ ≈ 0.74644 (9)

where I have not attempted to make ζ(τ) continuous2 at τ = 0.75. Although ζ(τ) looks

complicated, its form is basically “a constant minus a Gaussian centered on τ = 0,” with

some wiggles for 0.5 . τ . 5.

2.3. TM >> P : “Photocenter Distance”

Evaluating eqn. (8) in the “photocenter distance” regime with TM/P >> 1, it follows

that the average displacement due to binarity equals 0.746 a1. Solving the motion of the

primary in eqn (4) for the distance, and requiring that the semi-major axis equals Nσ times

the astrometric error (σ), I derive the “photocenter distance” (dPHC). This photocenter

distance is the distance out to which the semi-major axis of the photocentric orbit is resolved

at the Nσ level.

dPHC ∼ 7.46 ×
(

Pyr

MStar + MPL;S

)2/3

× MPL × 10

Nσ
× 10 µas

δX0,f
[pc] (10)

with MStar the stellar mass, MPL;S [MPL] the mass of the planet in units of the Sun’s mass [in

Jupiter masses (MJ)], and where I have used the average foreshortening due to inclination.

Equation (10) shows that the following properties allow for the detection of ESGPs at larger

distances: 1) longer-period systems, 2) stars of smaller mass, 3) planets of higher mass, 4)

relaxing the detection criterion, and 5) better astrometric accuracy.

A larger value for dPHC means that more ESGPs will be detected since the number of

stars increases roughly as the third power of distance. Thus, for example, all other things

being equal, a worsening of astrometric accuracy by a factor of two reduces the number of

detectable planets by a huge factor of 23=8. For orbit determination, similar arguments

hold.

2Numerically, I solve the discontinuity by computing the weighted average of the left- and right-hand

parts in the transition region (τ ∈ [0.65, 0.85]), where the weights vary linearly between three and zero.
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Equation (10) above is valid in the region where the astrometric accuracy is independent

of apparent magnitude. At fainter magnitudes, the astrometric accuracy is a function of

magnitude. Assuming photon statistics, I get: δX0(V ) = δX0,f 100.2 (V −Vf ), where V = MV +

5 log d−5. Note that δX0(V ) must exceed δX0,f , so that one needs: MV +5 log d−5−Vf ≥ 0,

or log d ≥ (Vf + 5 − MV )/5. The result is:

dPHC,MV =
√

dPHC dtr ∝
√

1/δX0,f for dtr ≤ dPHC ≤ df+ (11)

with

dtr = 10(Vf+5 −MV )/5 (12)

df+ = 10(Vf+5+4−MV )/5 ∼ 6.3 dtr (13)

where the distance is in units of parsec. Also, remember that Vf depends on spectral type.

Note that with these relations, dPHC,MV equals dPHC at the transition distance dtr. Here I

also assume that the astrometric accuracy follows photon-statistics over a range of 4 magni-

tudes (to Vf+ = Vf +4=18 [18.75] for AV [MV] stars for OBSS-A & GAIA), and that fainter

stars will not be used for planet detection. This additional criterion can be relaxed if the

mission design allows so, if not, the distance is limited to df+ or about 6.3 times dtr. I will

use the symbol d̃PHC to indicate either dPHC or dPHC,MV , whichever is appropriate.

2.4. TM << P : “Curvature Distance”

Rather than fitting a parabola to the astrometric data, I apply the procedure appropriate

for the intermediate regime to the long-period case as well. In this case, TM/P is much

smaller than unity so that equation (7) applies. The requirement that the binarity-induced

residual RMS is detectable reduces to:

NσδX0 ≤ a1 ζ(τ) (14)

≈ 1
2

γ

0.672
a1

(

TM

P

)2

≈ 0.83 a1

(

TM

P

)2

(15)

Substituting eqn (4) for a1, and solving for the curvature distance I get:

dC = 8.3 T 2
M MPL

(

1

P 2
yrMtot

)2/3

× 10

Nσ

× 10 µas

δX0,f

(16)

dC,MV =
√

dC dtr for dtr ≤ dPHC ≤ df+ [pc] (17)

with TM in years. This curvature distance is the distance out to which the curved orbit of

the photocentric orbit is still recognizable as being non-linear at the Nσ level. To arrive at
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eqn. (17), I have applied the formalism leading to eqn. (11) above. Note that the transi-

tion distance, where dMV takes over from d, is identical for the photocenter and curvature

distances. I will use the symbol d̃C to indicate either dC or dC,MV , whichever is appropriate.

Obviously –and contrary to the photocenter distance– the curvature distance decreases

with orbital period. After all, for orbital periods much exceeding the mission length, the

star’s motion is essentially rectilinear.

2.5. General Case

The solution of the general case [eqn. (14)] is just as straightforward:

NσδX0 ≤ ζ(τ) a1 =
1000

d

(

P

Mtot

)2/3

MPL ζ(τ) [µas] (18)

dPHC,C = 10.0

(

P

Mtot

)2/3

MPL ζ(τ) × 10

Nσ

× 10 µas

δX0,f

(19)

dPHC,C,MV =
√

dPHC,C dtr for dtr ≤ dPHC ≤ df+ (20)

where the units for distance are parsec.

3. Synergy

Since the general case is too complicated to gain much insight, I now concentrate on

the two limiting cases and extrapolate into the intermediate period regime. Requiring that

a star lies within the photocenter distance and the curvature distance leads to a maximum

distance (dmax) out to which an ESGP can be recognized by it’s astrometric signature. This

maximum distance corresponds to the intersection of the d̃PHC and d̃C curves, and occurs

at a unique orbital period, P̃ , given by:

P̃ aprox ≡ P aprox(d̃PHC = d̃C) = ˜P aprox(dmax) =

√

8.3

7.46
× TM (21)

∼ 1.05 TM

This period only depends on the mission length. Note that its value corresponds to τ = 0.95

and lies hence in the long-period regime. In this case, the maximum distance can be found

by differentiating eqn. (8) with respect to τ and finding the extremum. This value of τmax

yields ζ(τmax) and P̃ for a given mission duration and yields dmax with eqns. (19) and (20).

Numerically, I find that the exact period is about 27% smaller than approximate value:

P̃ exact ∼ 0.823 TM (22)
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For this case, where the maximal distance out to which an ESGP is detectable is given by:

dmax ∼ 6.55

(

TM

Mtot

)2/3

× MPL × 10

Nσ

× 10 µas

δX0,f

(23)

dmax,MV =
√

dmax dtr for dtr ≤ dPHC ≤ df+ (24)

and

daprox
max ≈ 1.18 dmax and daprox

max,MV ≈
√

daprox
max dtr (25)

and depends on the mission parameters as well as those of the binary system. The relevant

scaling relations are rather obvious here: The maximum distance increases as: 1) the as-

trometry improves, 2) the planetary mass increases, 3) as the mission duration increases, 4)

as the stellar mass decreases, and 5) if the detection threshold is lowered.

In figure 1, I plot the various distances and some derived quantifies for an A5V primary,

a 12-Jupiter planet and a “detection” criterion of Nσ=5. In the top panel, I plot all distance

limits (d̃PHC , d̃C and d̃PHC,C). Also plotted is the orbital period that corresponds to the max-

imum distance out to which the ESGP can be detected is indicated by the vertical (cyan)

line, which is determined numerically from the exact distance relation [eqns. (19) and (20)].

If a given ESGP is to be detected, it needs to be closer than the d̃PHC,C which is indicated by

the thick, curved (purple) line. This period-distance relation determines how much volume

(full, cyan curve in bottom panel) is “accessible” to this particular primary-secondary com-

bination (see below). Also plotted in the bottom panel are the ESGP probability density

function (PDF, dashed, purple, line), the number of detectable ESGPs [NESGP (dashed-

dotted, orange, line)], and the apparent magnitude (dashed-triple dotted [blue] curve). The

number of expected ESGPs equals simply the product of the accessible volume, times the

stellar density, times the probability that a star has an ESGP. I discuss each term in the

subsections below.

3.1. Accessible Volume

The number of stars surveyed that are amenable to the detection of a given planetary

mass orbiting a star of known mass is then simply equal to the the local volume density of

the star (ρ∗) times the accessible volume. Here I use the stellar density in the mid-plane of

the Galaxy. In the bottom panels of figures 1 and 2, I also present the accessible volume

(drawn cyan), computed as:

V olacc = 2πhz ×
[

2
(

e−d/hz − 1
)

h2
z + d(2hze

−d/hz + d)
]

, (26)

with hz the vertical scale-height of the stellar population. Here V olacc is the volume that,

if multiplied by ρ∗ yields the total number of stars out to d. This relation is exact for a a
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Fig. 1.— This figure presents an analysis of detectability of ESGPs by OBSS-A/GAIA for

the case that the primary is an A5 main-sequence star, and the secondary a 12-Jupiter mass

planet. Top panel: dPHC (red dotted line) and dC (dashed-dotted blue line) as a function

of orbital period. The dashed line (green) is the magnitude-corrected distance dPHC,MV ,

and the dashed-triple-dotted line (cyan) represents dC,MV . The intersection of dPHC,MV and

dC,MV yields P̃ and the maximum distance dMAX out to which the ESGP can be resolved

according to eqn. (24). The exact period and dmax are indicated by the vertical line (cyan).

The thick (black) line is the dmax(P ) relation based on the two limiting case, the thick curved

(purple) is the exact relation based on eqn. (19). Bottom Panel: In the bottom panel, the

apparent magnitude (blue dashed-triple-dotted line), the scaled ESGP probability (dashed

purple line), the scaled accessible volume (drawn cyan line) and the scaled number of planets

(dashed-dotted orange line) are plotted. The ESGP PDF plotted is integrated over a ±1%

range in mass and period.
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“plane-parallel sheet” with constant density in the plane, and an exponential vertical density

distribution. For distances not too far from the Sun, this approximation is reasonable. The

following expression for the accessible volume is accurate to ±5% (peak-to-peak; 0.25% RMS)

or so:

V olacc ∼ π h3
z

(

d

hz

)κ

(27)

with : κ ∼ 2.64 +
X

104
(−1630 + X(−93.5 + X(64.5 + X(2.16 − 1.30X)))) (28)

and : X = ln
d

hz
. (29)

Equation (27) can be inverted iteratively to yield d(V olacc), with κ = 2.5 as a starting value.

Note that the exponent κ ranges from 2.93 to 2.64 to 2.15 for (d/hz) near zero, equal to

unity and approaching infinity, respectively.

3.2. ESGP Probability Density Distribution

I use the Probability Density Distribution (PDF) derived by Tabachnick & Tremaine

(2002, MNRAS, 335, 151) to estimate the actual number of detected ESGPs, as a function

of planetary mass and period. Note that they determined their PDF for planets with masses

between 0.5 and 12 MJ and periods up to 10 years. The basic features of this PDF are

that the probability of having a planet increases with planetary mass, and that the PDF

decreases with orbital period. Integrating this PDF between 0.1 and 10 MJ and period of 2

days and 10 years yields an overall probability of just about 8%. For convenience, I repeat

their PDF here:

ProbPL(M, P ) ∼ C

M P

(

M0

M

)α (

P0

P

)β

(30)

and

NPL(M1, M2, P1, P2) ∼ C

αβ

[

{(

M0

M1

)α

−
(

M0

M2

)α}

×
{

(

P0

P1

)β

−
(

P0

P2

)β
}]

(31)

with :

C ∼ 1.904 10−3 α ∼ 0.11 β ∼ −0.27

M0 = 1.5 [MJ ]

P0 = 90.0 [days]

where the periods (P, P0, P1, P2) are measured in days, the masses (M, M0, M1, M2) in Jupiter

masses, and where the PDF is integrated over the following ranges: M1 ≤ MPL ≤ M2 and
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Fig. 2.— These plots show the analyses for a G5V primary (top plot) and a M2V star

(bottom panel). For a full explanation of the figures, see figure 1. Both figures are for

OBSS-A/GAIA mission parameters.



– 12 –

P1 ≤ P ≤ P2. The bottom panels of figures 1 and 2 clearly show that the PDF (dashed,

purple line) rises towards longer periods. (This plotted PDF is integrated over ±1% of the

period plotted on the abscissa and ±1% of the mass listed in the figure’s title). In fact,

the PDFs of eqn. (30) is not bound: extending the integration boundaries to infinity yields

an infinite probability, and is hence unphysical. However, such extensions to infinity are

unphysical as well, so that eqns. (30) and (31) summarize the current state of affairs to

reasonable accuracy. In the remainder of the memo, I assume that this PDF is independent

of the spectral type (mass) of the primary.

3.3. Number of ESGPs

The number of expected extra-solar giant planets is the integral over the PDF and the

number of stars, and is a function (F) of properties of the stellar primary [MV , ρ∗(MV ), hz(MV )],

mission parameters [TM , Vf(MV ), δX0,f ], and the required accuracy [Nσ]:

NESGP = F(MV , ρ∗(MV ), hz(MV ), TM , Vf(MV ), δX0,f , Nσ) (32)

NESGP = ρ∗(MV )

∫ P=900 years

P=2 days

dP

∫ M=12 MJ

M=0.1 MJ

dM ×

ProbPL(P, M) × V ol(P, M ; MV , hz(MV ), TM , Vf(MV ), δX0,f , Nσ) , (33)

where ρ∗(MV ) and hz(MV ) are the type-dependent stellar density and scaleheight of the

population, and Vf(MV ) the type-dependent floor magnitude3. I solve eqn. (33) on a fine

grid in P (3,000 cells) and M (300 cells), where I assume that the volume is constant in a

cell and evaluate it at the center of the cell. Integrating eqn. (33) over a cell then reduces to

multiplying this volume by the integral of the PDF over the cell [using eqn. (31)]. The total

number of ESGPs then simply equals the sum over all grid points.

The expected number of ESGPs (dashed-dotted, orange line in figures 1 and 2 depends

strongly upon orbital period. In fact, the curve is rather strongly peaked, indicating that

most detections will be made in a fairly small range of periods, and hence distances and

magnitudes. For the particular case plotted in figure 1, the full-width at quarter maximum

(FWQM) range corresponds to periods ranging from 1.9 to 9.1 years and a magnitude interval

from 7.6 to 9.0, and a distance range of 140 to 264 pc. For orbit determination with a three

times larger signal-to-noise requirement, the range in orbital periods is just slightly smaller,

3For AV, FV, G5, KV and MV stars, I use the following values for Vf , (ρ∗) and [hz]: 14.0, 14.10, 14.20,

14.44 and 14.75 mag (0.938, 4.70, 11.79, 18.76, 63.50 stars per 1000 pc3) [100, 200, 280, 300, 300 pc]. As

stellar masses I use: 2.00, 1.26, 0.95, 0.63, and 0.40 M�. See also table 5
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but the primaries are roughly three times closer, and the stars 2.4 mag brighter at V ∼ 5.9.

Also note that the less massive planets are possibly more interesting to study: the parent

star of a 1 Jupiter-mass planet needs to be 12 times closer and will hence be 5.4 mag brighter

at V ∼ 2.9 for “detection” and at V ∼ 0.5 for orbit determination. Similar plots are shown

for a G5V and M2V primary and a 4 Jupiter-mass planets in figure 2.

A summary of the dependence of the properties on planet masses is presented in tables 1

and 2 for OBSS-A and in tables 3 and 4 for OBSS-B. Graphically, the results for OBSS-A

are presented in figures 3 and 4, where the scales are linear and logarithmic, respectively4.

The same data for OBSS-B mission parameters is presented in figures 3 and 4. The structure

of these figures is the same: the left-hand column is for detections, the right-hand column

for orbit determinations. Each sub-panel corresponds to a particular spectral type. In each

of the panels, the thick horizontal line (black) gives the period [∼ 0.82TM , cf., eqn. (22)]

that corresponds to the maximum distance out to which a particular star-planet can be

recognized. The dotted lines (black) are the orbital periods where the ESGP number count

has dropped to one-quarter of the peak. The dashed-dotted lines gives the number of ESGPs

for integrated over all periods and a 1% range in planetary mass, where all curves in a column

are scaled by the same maximum. As can be seen from the dashed and dashed-dotted lines

(red) of figure 3, the magnitude-range corresponding to FWQM and the faintest magnitude

is quite small, typically about 1.2 magnitudes. This is the result of the small distance

range (±13%) over which most ESGPs of a given mass will be recognized. [The (purple)

dashed-triple-dotted lines are the corresponding distance limits (in figure 4)].

The magnitude and distance ranges presented here are only valid for the particular

spectral subtype used. The actual ranges for a given spectral type will be larger because

there is intrinsic spread in the absolute magnitude for stars of a given mass (due to the age

spread), and because the stellar masses and luminosities change with spectral type.

4. Mission Design Considerations

Several qualitative conclusions can be drawn from the work presented above with regard

to planet detection (PD) and orbit determination (OD). For more details, see tables 1 through

4.

• The largest number of ESGPs will be found with periods close to 0.82 times the mission

4Note that these results are obtained for the OBSS-A configuration, but are valid for all missions that

have a mission duration of 5 years and a astrometric accuracy of 10µas.
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Table 1. Expected number of “Detected” ESGPs

for OBSS-A/GAIA mission parameters.

Planet Detection: Nσ = 5

MPL → 0.5 1.0 2.0 4.0 8.0 12.0 TOT

SPT↓ Number of Planets

A5V 0 0 0 3 16 34 53

F5V 0 1 5 35 224 496 761

G5V 0 3 22 155 1,020 2,295 3,495

K5V 2 11 79 544 3,188 4,838 8,662

M2V 15 92 592 2,113 5,730 6,796 15,338

TOT 17 107 698 2,850 10,178 14,459 28,309

MPL → 0.5 1.0 2.0 4.0 8.0 12.0

SPT↓ V-magnitude

A5V 1.5 3.1 4.5 6.0 7.5 8.3

F5V 3.8 5.3 6.8 8.3 9.8 10.6

G5V 5.8 7.3 8.8 10.3 11.8 12.6

K5V 8.7 10.2 11.7 13.2 14.2 14.6

M2V 12.0 13.5 14.6 15.3 16.0 16.4

MPL → 0.5 1.0 2.0 4.0 8.0 12.0

SPT↓ Distance [pc]

A5V 9 18 35 69 137 202

F5V 12 24 48 95 187 276

G5V 14 29 57 114 226 334

K5V 19 38 75 150 242 292

M2V 26 51 84 117 164 200

Note. — Number of detected planets (top part of the table), mag-

nitude requirements (middle part) and maximal distances (bottom

part) for planet detection (Nσ = 5) for missions with GAIA and/or

OBSS-A parameters. The columns correspond to different planet

mass ranges. The first column integrates over 0.1 to 0.5 MJ , and

the ith column integrates over the mass listed in column i− 1 to the

mass of column i.
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Table 2. Expected number of ESGPs with determined orbits

for OBSS-A/GAIA mission parameters.

Planet Detection: Nσ = 15

MPL → 0.5 1.0 2.0 4.0 8.0 12.0 TOT

SPT↓ Number of Planets

A5V 0 0 0 0 1 2 3

F5V 0 0 0 1 10 24 35

G5V 0 0 1 6 44 107 158

K5V 0 0 3 22 155 373 553

M2V 1 4 26 182 936 1,307 2,456

TOT 1 4 30 211 1,146 1,813 3,205

MPL → 0.5 1.0 2.0 4.0 8.0 12.0

SPT↓ V-magnitude

A5V -0.8 0.7 2.2 3.7 5.1 6.0

F5V 1.4 2.9 4.4 5.9 7.4 8.3

G5V 3.4 4.9 6.4 7.9 9.4 10.3

K5V 6.3 7.8 9.3 10.8 12.3 13.2

M2V 9.6 11.1 12.6 14.1 14.8 15.2

MPL → 0.5 1.0 2.0 4.0 8.0 12.0

SPT↓ Distance [pc]

A5V 3 6 12 23 46 69

F5V 4 8 16 32 63 94

G5V 5 10 19 38 76 114

K5V 6 13 25 50 100 149

M2V 9 17 34 68 96 117

Note. — For an explanation of the columns, see table 1.
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Table 3. Expected number of “Detected” ESGPs

for OBSS-B mission parameters.

Planet Detection: Nσ = 5

MPL → 0.5 1.0 2.0 4.0 8.0 12.0 TOT

SPT↓ Number of Planets

A5V 0 0 0 0 2 4 6

F5V 0 0 0 3 24 58 85

G5V 0 0 2 16 108 260 386

K5V 0 1 8 55 380 897 1,341

M2V 1 9 64 431 1,652 2,128 4,285

TOT 1 10 74 505 2,166 3,347 6,103

MPL → 0.5 1.0 2.0 4.0 8.0 12.0

SPT↓ V-magnitude

A5V -0.2 1.3 2.8 4.3 5.8 6.7

F5V 2.1 3.6 5.1 6.6 8.1 9.0

G5V 4.1 5.6 7.1 8.6 10.1 11.0

K5V 7.0 8.5 10.0 11.5 13.0 13.8

M2V 10.3 11.8 13.3 14.4 15.1 15.6

MPL → 0.5 1.0 2.0 4.0 8.0 12.0

SPT↓ Distance [pc]

A5V 4 8 16 32 63 94

F5V 5 11 22 43 86 128

G5V 7 13 26 52 103 155

K5V 9 17 34 68 136 202

M2V 12 23 47 80 112 136

Note. — Number of detected planets (top part of table), mag-

nitude requirements (middle) and maximal distances (bottom)

for planet detection (Nσ = 5) for missions with OBSS-B pa-

rameters (δX0,f = 22 µas). The columns correspond to differ-

ent planet mass ranges. The first column integrates over 0.1 to

0.5 MJ , and the ith column integrates over the mass listed in

column i − 1 to the mass of column i.
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Table 4. Expected number of ESGPs with determined orbits

for OBSS-B mission parameters.

Orbit Determination: Nσ = 15

MPL → 0.5 1.0 2.0 4.0 8.0 12.0 TOT

SPT↓ Number of Planets

A5V 0 0 0 0 0 0 0

F5V 0 0 0 0 1 2 3

G5V 0 0 0 1 4 11 16

K5V 0 0 0 2 15 38 55

M2V 0 0 2 18 126 291 437

TOT 0 0 2 21 146 342 511

MPL → 0.5 1.0 2.0 4.0 8.0 12.0

SPT↓ V-magnitude

A5V -2.6 -1.0 0.5 2.0 3.5 4.3

F5V -0.3 1.2 2.7 4.2 5.7 6.6

G5V 1.7 3.2 4.7 6.2 7.7 8.6

K5V 4.6 6.1 7.6 9.1 10.6 11.5

M2V 7.9 9.4 10.9 12.4 13.9 14.4

MPL → 0.5 1.0 2.0 4.0 8.0 12.0

SPT↓ Distance [pc]

A5V 1 3 5 11 21 32

F5V 2 4 7 14 29 43

G5V 2 4 9 17 35 52

K5V 3 6 11 23 46 68

M2V 4 8 16 31 61 80

Note. — For an explanation of the columns, see table 3.
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Fig. 3.— Summary of properties of ESGPs as “observed” by OBSS-A/GAIA for 5 spectral

types: A5V, F5V, G5V, K5V and M2V from top to bottom. Results for “detections” (5σ) are

presented in the left column, and for “orbit determination” (15σ) in the right-hand column.

The thick drawn (black) lines represent the period where maximal distance (volume) is

achieved. The dotted lines (black) are the periods where the number of ESGPs [NESGP (P )]

has dropped to NESGP (P ) = 1
4
NMAX

ESGP . The dashed and dashed-dotted lines (red) are the

magnitudes that correspond to the peak of the same points on the NESGP (P ) curve. The

dashed-triple-dotted line (green) corresponds to the (scaled) number of detectable ESGPs.

The number of expected ESGPs is scaled separately for the two columns.
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Fig. 4.— Summary of properties of ESGPs as “observed” by OBSS-A/GAIA for 5 spectral

types: A5V, F5V, G5V, K5V and M2V from top to bottom. Results for “detections” and

“orbit determinations” are plotted in the left- and the right-hand columns, respectively.

The dashed-triple-dotted lines (magenta) are the distances where NESGP (P ) = NMAX
ESGP and

NESGP (P ) = 1
4
NMAX

ESGP . As in figure 3, the dashed-triple-dotted line (green) corresponds to

the (scaled) number of detectable ESGPs, with different scaling for the two columns.
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Fig. 5.— Summary of properties of ESGPs as “observed” by OBSS-B. For a full explanation

of the plots, see figure 3.
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Fig. 6.— Summary of properties of ESGPs as “observed” by OBSS-B. For a full explanation

of the plots, see figure 4.
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duration (4.12 years for OBSS/GAIA).

• For A stars, the period range is roughly 2 to 10 years, for M stars the range is 1 to 15

years.

• If a sample is complete to a given distance for a certain planetary mass, then the

sample will also be complete for all larger planetary masses

• Most ESGPs of a given mass will be detected in a small range of period, distance &

apparent magnitude. For example, for a planets in the range of 4 to 6 MJ , I get:

– The full magnitude range for PDs [ODs] for G-type stars is 10.6 to 11.8 [8.2 to

9.4] for OBSS-A and 8.9 to 10.1 [6.6 to 7.7] for OBSS-B.

– The corresponding distance ranges are 124 to 217 pc [42 to 72 pc] for OBSS-A

and 58 to 99 pc [19 to 33 pc] for OBSS-B.

• Most PDs and ODs are found among M-type stars

• The fraction of M star with PDs and ODs increases as the astrometric accuracy de-

creases and/or the detection threshold increases. For example,

– The fraction of PDs [ODs] for M-type stars increases from 54% [77%] for OBSS-A

to 70% [86%] for OBSS-B.

• The fraction of “interesting” ESGPs declines strongly as the astrometric accuracy

decreases and/or the detection threshold increases. For example,

– The fraction of PDs [ODs] for G-type stars declines from 12.3% [4.9%] for OBSS-A

to 6.3% [3.1%] for OBSS-B.

– The number of PDs [ODs] with masses between 2 and 4 MJ for G-type stars

declines from 155 [6] for OBSS-A to 16 [1] for OBSS-B.

More specifically, if we use the number of detectable planets as a metric for the success

of the mission, it is possible to estimate how this number varies with mission parameters. As

a first step, the expected number scale with the accessible volume, which is approximated as

V ∼ πh3
z (dlim

hz
)κ [see eqn. (27)]. Unfortunately, the derivation of dlim is fairly involved. I will

go through the steps sequentially and present the results in tabular form in tables 5 and 6.

1. Determine the transition distance

(a) Determine the floor magnitude (Vf), which is spectral type dependent
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(b) Determine the absolute magnitude of the stars

(c) dtr(MV , Vf) = 10[Vf (MV )+5−MV ]/5

2. Determine the distance that corresponds to the faintest allowable magnitude [Vf+(MV )]

(a) df+(MV , Vf) = 10(Vf++5−MV )/5, where I use Vf+ = Vf + 4, so that

(b) df+ ∼ 6.3 dtr.

3. Determine dmax according to eqn. (23).

4. Determine dlim, which depends on:

I) mission duration, II) stellar mass, III) planetary mass, IV) the floor for the astro-

metric accuracy, and V) the detection threshold

(a) IF dmax ≤ dtr THEN dlim = dmax

(b) ELSE dlim =
√

dmax dtr, according to eqn. (24).

(c) IF dlim ≥ df+ THEN dlim = df+

5. The number of ESGPs is proportional to:

NESGP = ProbPL,ave ρ∗ V (dmax) ≈ Probave π ρ∗ h3
z (dmax/hz)

κ, where κ ∼ 2.7 with a

slight variation depending on the value of (dmax/hz).

(a) The actual number of expected ESGPs for a given spectral type is predicted accu-

rately (to ± 10%) when using ProbPL,ave = 0.01, and the dmax value appropriate

for that spectral type.

(b) ProbPL,ave depends on the mission duration because the mission duration deter-

mines which part of the PDF will be best sampled.

6. Scaling the number of ESGPs as a function of mission accuracy goes as follows:

(a) IF 4(a), THEN dmax ∝ 1/δX0,f and NESGP ∝ (1/δX0,f)
κ

(b) IF 4(b), THEN dmax ∝
√

1/δX0,f and NESGP ∝ (1/δX0,f)
κ/2

(c) IF 4(c), THEN dmax is independent of δX0,f

When only a small range in planetary masses and periods is considered, equation (33) sim-

plifies considerably because the integral ProbPL over P and M can be considered constant.

In that case, the relative number of ESGPs between case “A” and “B” are easily calculated:

NA
ESGP

NB
ESGP

∼ ρ∗A

ρ∗B
× V ol(dmax,A)

V ol(dmax,B)
× ProbPL(A)

ProbPL(B)
(34)
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where the volumes are determined via eqn. (27) and dmax from eqns. (23) and (24). In the

general case, one can use eqn. (31) to approximate the ratio of the probabilities. For the

specific case of determining the relative numbers detected by OBSS-A versus OBSS-B, the

only difference between case A & B is the astrometric accuracy. Still, for this simple problem

three solutions exist depending on the relative location of dmax with respect to the transition

distance: I) both distances are smaller than dtr, the dmax ratio equals d̃max,A/d̃max,B =

22/10 = 2.2, II) both distances are larger than dtr, so that d̃max,A/d̃max,B =
√

22/10 = 1.5,

III) case A exceeds dtr and case B does not, the distance ratio equals
√

22/10
√

dtr/dmax,B.

The first two solutions only depend on the ratio of the astrometric accuracies, while for the

third solution the parameters of the binary system come in via the second square-root term.

Based on conditions 6(a) and 6(b) and eqn. (34) above, I expect that scaling from OBSS-

A/GAIA to OBSS-B yields 2.22.7 ∼ 8.4 times fewer ESGPs for those primaries that have

dmax < dtr and 1.52.7 = 3 times fewer ESGPs when dmax > dtr [with κ=2.7]. Obviously, since

the ratios are so different on the two sides of dtr, the scaling will be less accurate close to the

transition distance, especially when the distances for the two missions bracket the transition

distance. Generally speaking, the scaling procedure outlined above works to within ±20% or

so. For the case of OBSS-A to OBSS-B scaling 10 to 30% occur when the limiting distance

is on the same side of the transition distance. However, errors of order 80% occur when

the limiting distances of the two missions lie on either side of dtr. For the total number of

ESGPs, this scaling overestimates the number of ESGPs by roughly 50%. Note that the

scaling procedure [1(a) through 6(c)] is, strictly speaking, valid for just a single planetary

mass. Nevertheless, by picking a mass somewhere in the middle (5.25 MJ), the scaling is

accurate to about 30%.

If one wants to use a single metric to quantify the mission’s performance I would rec-

ommend to use MV stars because only for these stars the limiting distance is almost always

larger than the transition distance, and because the majority of ESGPs will be found around

M-type stars. In that case, equation (34) can be applied to predict the relative performance

of the missions. However, the drawback of this metric is that it is hard to predict the number

of “interesting” ESGPs, such as the number of planets around early-type stars or the number

of low-mass planets around G-type stars.

5. Conclusion

The number of ESGPs detected (5σ) with a configuration like OBSS-A/GAIA are tab-

ulated in table 1 and the number of ESGPs for which orbits might be determined in table 2.

The OBSS-B results are summarized in tables 3 and 4. The numbers for OBSS-A are sub-

stantially smaller than previously reported. For the stellar types in common, this work

reports decreases by about a factor of 10 for ODs and a factor of 2 for PDs. These differ-
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Table 5. Mission Scaling Relation Worksheet for OBSS-A and GAIA.

A5V F5V G5V K5V M2V Comments

ρ∗ [stars/1000 pc3] 0.938 4.70 11.79 18.76 63.50

hz [pc] 100 200 280 300 300

MV [mag] 1.90 3.50 5.10 7.40 10.00

M∗ [M�] 2.00 1.26 0.95 0.63 0.40

Vf [mag] 14.00 14.10 14.20 14.44 14.75

dtr [pc] 2,630 1,318 661 256 89 eqn. (12)

df+ [pc] 16,595 8,317 4,168 1,614 562 eqn. (13)

MPL = 5.25 MJ , Nσ=5 and dX0,f = 10 µas

dmax [pc] 123 167 202 265 357 eqn. (23)

dmax < dtr ? yes yes yes no no

dlim,1 [pc] 123 167 202 260 178

dlim > df+ ? no no no no no

dlim [pc] 123 167 202 260 178

dlim/hz 1.23 0.84 0.72 0.87 0.59

κ 2.61 2.67 2.70 2.67 2.72 eqn. (28)

V olacc [106 pc3] 5.4 15.6 28.5 58.0 20.6 eqn. (27)

Nscl
ESGP,ANA(MPL = 5.25) 1.0 14.5 66.4 215.4 258.6 eqn. (34)

Nscl
ESGP,NUM (all MPL) 1.0 14.7 67.3 170.9 305.5

Nscl
ESGP,ANA/Nscl

ESGP,NUM 1.00 0.99 0.99 1.26 0.85

MPL = 5.25 MJ , Nσ=15 and dX0,f = 10 µas

dmax [pc] 41 56 67 88 119

dmax < dtr ? yes yes yes yes no

dlim,1 [pc] 41 56 67 88 103

dlim > df+ ? no no no no no

dlim [pc] 41 56 67 88 103

dlim/hz 0.41 0.28 0.24 0.29 0.34

κ 2.78 2.82 2.84 2.82 2.80

V olacc [106 pc3] 0.3 0.7 1.2 2.7 4.3

Nscl
ESGP,ANA(MPL = 5.25) 1.0 12.9 57.0 204.1 1090.3

Nscl
ESGP,NUM (all MPL) 1.0 11.0 50.7 177.0 808.3

Nscl
ESGP,ANA/Nscl

ESGP,NUM 1.00 1.17 1.13 1.15 1.35

Note. — The top part of the table lists parameters that are intrinsic to the stars,

for five different spectral types (the columns). The middle and bottom parts of the

table follows the decision tree enumerated in section 4 as steps 1(a) through 6(c). The

middle part is for planet detection (5 σ), and the bottom part for orbit determination

(15 σ). The last three lines of the middle and bottom parts give: 2) the expected ration

of ESGPs according to the “worksheet,” normalized to unity for A5 stars, 2) the actual

number of ESGPs according to the full numerical integration (also normalized to the

A5V count), and 3) the ratio of the the two.
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Table 6. Mission Scaling Relations: OBSS-B and OBSS-A to OBSS-B.

A5V F5V G5V K5V M2V TOT

MPL = 5.25 MJ , Nσ=5 and dX0,f = 22 µas

dmax [pc] 56 76 92 120 162

dmax < dtr ? yes yes yes yes no

dlim,1 [pc] 56 76 92 120 120

dlim > df+ ? no no no no no

dlim [pc] 56 76 92 120 120

dlim/hz 0.56 0.38 0.33 0.40 0.40

κ 2.73 2.79 2.81 2.78 2.78

V olacc [106 pc3] 0.6 1.7 3.0 6.7 6.7

Nscl
ESGP,ANA(MPL = 5.25) 1.0 13.2 59.0 208.7 706.3

Nscl
ESGP,NUM (all MPL) 1.0 13.5 61.7 214.7 708.2

NESGP,ANA/NESGP,NUM 1.00 0.98 0.96 0.97 1.00

NESGP,OBSS−A2B/NESGP,OBSS−B 0.86 0.93 1.60 1.65 1.15 1.28

MPL = 5.25 MJ , Nσ=15 and dX0,f = 22 µas

dmax [pc] 19 25 31 40 54

dmax < dtr ? yes yes yes yes yes

dlim,1 [pc] 19 25 31 40 54

dlim > df+ ? no no no no no

dlim [pc] 19 25 31 40 54

dlim/hz 0.19 0.13 0.11 0.13 0.18

κ 2.86 2.89 2.90 2.89 2.87

V olacc [106 pc3] 0.03 0.06 0.11 0.25 0.63

Nscl
ESGP,ANA(MPL = 5.25) 1.0 12.5 54.9 198.2 1657

Nscl
ESGP,NUM (all MPL) 1.0 11.7 58.4 206.2 1642

NESGP,ANA/NESGP,NUM 1.00 1.07 0.94 0.96 1.01

NESGP,OBSS−A2B/NESGP,OBSS−B 1.20 1.13 1.04 1.76 1.84 1.81

Note. — Table layout is similar to that of table 5, except that the rows specifying

the stars intrinsic to the star are omitted. Furthermore, I have added one row to each

of the two parts of the table. The last row indicates the ratio of the expected number of

OBSS-B ESGPs based on scaling the OBSS-A results and the actual OBSS-B results.
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ences are due several improvements of the procedure: I) Here I use a self-consistent criterion

for the photocenter- and the curvature distances that is tailored to “binary” systems with

periods roughly equal to the mission period, II) I have extended the analysis beyond Vf , and

III) for this memo, the calculations are done on a much finer grid. The first improvement is

responsible for most of the differences.

Scaling relations developed in section 4 can be used to calculate the relative numbers

of ESGPs as a function of spectral type, orbital period or planetary mass [eqn. (34]. The

following general conclusions hold, independent of mission architecture: I) the majority

(54% to 86%) of ESGPs is expected to be found around M-type stars, II) the number of

“interesting” ESGPs (low-mass planets and/or high-mass primaries) is roughly three times

more sensitive to changes in mission parameters than the overall number of ESGPs, III)

most of the uncovered ESGPs have a small range of orbital periods ( 1
2

to twice the mission

duration), IV) for a given binary, most of the ESGPs will be found around primaries with a

small magnitude range (±0.7 mag), V) the masses of the uncovered ESGPs will tend to be

large, VI) “interesting” systems will have bright primaries.

Comparing the specific case of OBSS-A/GAIA versus OBSS-B, I find the following:

1. OBSS-A/GAIA will detect 28,300 ESGPs, versus 6,100 (4.6 times fewer) for OBSS-B

2. OBSS-A/GAIA will be able to determine orbits for 3,200 systems, versus 510 for (6.3

times fewer) for OBSS-B

3. OBSS-A/GAIA [OBSS-B] can detect 17 [1] ESGPs with masses below 0.5 MJ . The

magnitudes of these systems are between 8.7 and 12.0 [7.0 to 10.3].

4. OBSS-A/GAIA [OBSS-B] can determine orbits for 30 [2] ESGPs with masses below 2

MJ . The magnitudes of these systems are between 9.3 and 12.6 [9.6 to 10.9].

5. For G-type stars, OBSS-A/GAIA [OBSS-B] will be able to detect 3,500 [390, or 9 times

fewer] ESGPs. The magnitudes of these systems are between 7.3 and 12.6 [7.1 to 11.0].

6. For G-type stars, OBSS-A/GAIA [OBSS-B] will be able to determine orbits for 158

[16, or 10 times fewer] ESGPs. The magnitudes of these systems are between 6.4 and

10.3 [6.2 to 8.6].

7. et. cetera.

To summarize, an OBSS-A/GAIA type mission will discover many ESGPs, over a wide

range of spectral types, and planetary masses. OBSS-B, with twice worse accuracy will
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still discover several thousand ESGPs but can determine orbits for just a couple of hundred

systems. For “interesting” planets, the penalty incurred from poorer astrometric accuracy

is substantially larger than for the majority of the ESGPs. For both missions, the parent

stars of the ESGPs will have magnitudes brighter than V = 16 [V = 13] for detection

[orbit determination]. In the game of astrometric planet detection, there is no substitute for

astrometric accuracy.


