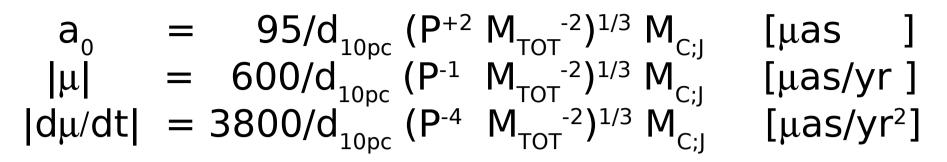
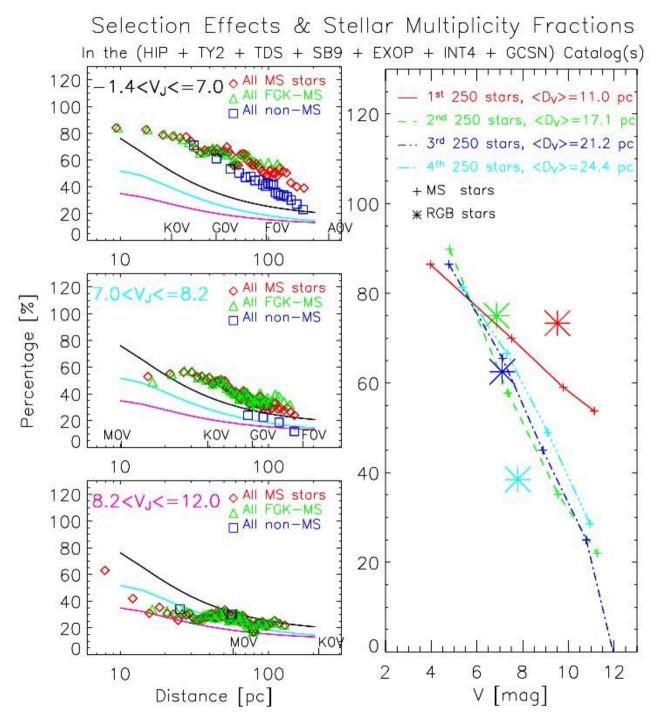
#### The Importance of Historical Astrometry, V2 Rob Olling (UMd)



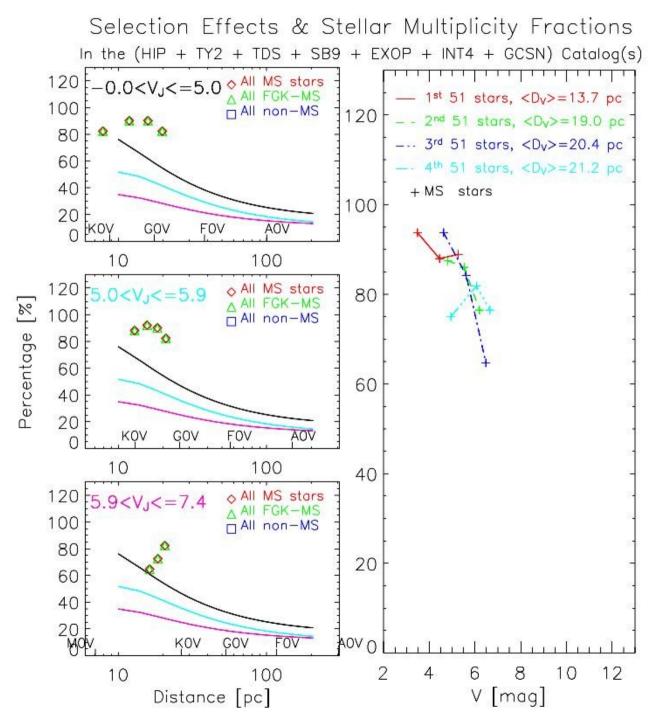

Importance of Historical Astrometry Rob Olling (UMd)

## **Outline**

- SIM-GAIA Synergy via Binaries
  - Binaries are an astrophysical bonus, provide
    - Masses, radii, ..., AGES
  - Also, allow fairly easy investigation of GAIA/SIM synergy
  - Also, fairly easy to incorporate historical data sets
    - Use Hipparcos catalogue ( $\pi/\Delta\pi$  >=10)
    - Assume 100% binarity rate & Secondary from IMF
  - SIGA combination is particularly good for acceleration & jerk


## **Some Scales for Long Period Orbits**




| 0.1    | M <sub>SUN</sub> @ | 50 pc    |           |               |
|--------|--------------------|----------|-----------|---------------|
| Period | a <sub>0</sub>     | μ        | dµ/dt     | Comment       |
| [yr]   | [µas]              | [µas/yr] | [µas/yr²] | Comment       |
| 10     | 8,665              | 5,444    | 3,420.6   | 5 yr; SOF     |
| 20     | 13,755             | 4,321    | 1,357.5   | -             |
| 40     | 21,835             | 3,430    | 538.7     |               |
| 80     | 34,660             | 2,722    | 213.8     |               |
| 160    | 55,020             | 2,161    | 84.8      |               |
| 320    | 87,338             | 1,715    | 33.7      | 3-σ; GAIA 5yr |
| 640    | 138,641            | 1,361    | 13.4      | 3-σ; SIM 5yr  |
| 1,280  | 220,079            | 1,080    | 5.3       | 3-σ; GAIA+SIM |
| 2,560  | 349,354            | 857      | 2.1       |               |

Importance of Historical Astrometry Rob Olling (UMd)

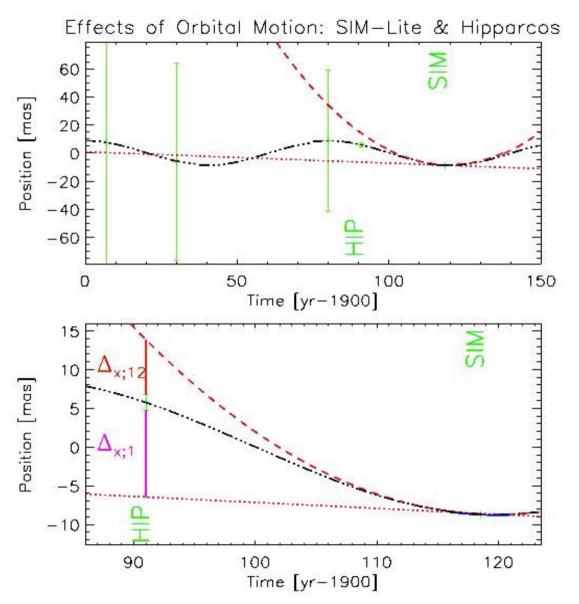
### **Multiplicity of Hipparcos Stars**



## **Multiplicity of Nearby G Stars**



# **Around Nearby/Bright-ish Stars**


## • Oldest Catalog goes back to early 19<sup>th</sup> C.

- Astrographic Catalogue(s)
  - Epoch: ~1907
  - Position errors ~ 220 mas
  - Down to V ~ 14<sup>th</sup> mag
- AGK, GC, ... DSS (1930+, 50-200 mas; V<21)

#### - Accuracy derived from:

- Matching of Hipparcos stars with early catalogs
- Reject outliers
- Derive local plate constants
- Iterate
- How accurate are these backtrapolations?

## **Depends only on Orbits of Binaries**



One can study the effects independent of the <u>barycentric</u> <u>motion</u> by looking at:

accelerations & up
 difference between

 long- short term pms
 binary-induced
 position differences

Importance of Historical Astrometry Rob Olling (UMd)

## Various Methods Sample Different At's

- Long-term proper motions
  - 3 epochs, separated x5 in time
  - 3 epochs, separated x20 in error ( $\varepsilon_{\mu}$ )
    - AC 1907 SIM 2020 ; 113 yr,  $\epsilon_{\mu} = 1000 \ \mu as/yr$
    - HIP1991 GAIA2015 ; 24 yr,  $\epsilon_{\mu} = 42 \,\mu as/yr$
    - GAIA SIM ; 5 yr,  $\varepsilon_{\mu} = 2 \mu as/yr$

#### SIGA combination particularly good for: dμ/dt and jerk GB HIP GB+H GAIA SIM G+H S+H S+G ΔT 80 3 180 5 5 27 32 10 y

74 9.6 5

[Note values have been updated from presentation to include <u>weighted fits</u>: this brings the errors down when adding a catalog with large errors). Unweighted fits increase the error wrt best best catalog.]

110 1900 36 4.9 2.5 2.4 1.3 0.5

Importance of Historical Astrometry Rob Olling (UMd) SIG

4.8 2.8

1

μas/yr<sup>2</sup>

٠

ε**(d**μ/**dt)** 

€ S+G

555

3800

|             |       |           | 0/of       |
|-------------|-------|-----------|------------|
|             |       |           | % of       |
| Survey(s)   | P_MIN | P_MAX     |            |
|             |       |           | "detected" |
|             | [yr]  | [yr]      |            |
| Primaries   |       |           |            |
| HIP         | 1.6   | 12.9      | 1.7        |
| GAIA        | 0.2   | 1,578.0   | 41.0       |
| SIM         | 0.1   | 3,480.0   | 47.2       |
| GAIA+HIP    | 0.7   | 1,750.0   | 35.1       |
| SIM+HIP     | 0.6   | 2,639.1   | 39.5       |
| SIM+GAIA    | 0.1   | 9,709.0   | 54.2       |
| Secondaries |       |           |            |
| HIP         | 0.2   | 91,340.0  | 58.9       |
| GAIA        | 0.0   | 16,534.5  | 61.2       |
| SIM         | 0.0   | 35,293.0  | 65.2       |
| GAIA+HIP    | 0.1   | 16,835.1  | 56.8       |
| SIM+HIP     | 0.1   | 27,908.0  | 61.0       |
| SIM+GAIA    | 0.0   | 137,298.0 | 72.7       |

Simulated Hipparcos catalogue

- d ~ 60 pc
- 100% binaries.

Surveys are tested for 3-sigma acceleration [as determined for the specific catalog (combination)]

#### **Proper Motion Differences:**

• To date limited by limited accuracy of longterm proper motions (of the primaries)

-HIP-TYC2  $\Delta \mu => 12\%$ , P in [1.00, 0.7k] yr

- •Better with GAIA/HIP, SIM/HIP, GAIA/SIM
  - -GAIA-HIP  $\Delta \mu => 59\%$ , P in [0.10, 23.6k] yr

-SIM -HIP $\Delta \mu =>$  70%, P in [0.05, 25.5k] yr-GAIA-SIM $\Delta \mu =>$  61%, P in [0.10, 23.5k] yr

Importance of Historical Astrometry Rob Olling (UMd) SIGA, Nov. 2008

# **Position Differences**

| Survey       | Fraction of Binaries<br>with significant<br>Position<br>Differences |          |  |
|--------------|---------------------------------------------------------------------|----------|--|
|              | LIN_FIT                                                             | QUAD-FIT |  |
| Ground       | 20.0%                                                               | 4.5%     |  |
| HIP+GB       | 40.0%                                                               | 20.0%    |  |
| GAIA+HIP     | 47.0%                                                               | 32.0%    |  |
| SIM+HIP      | 50.0%                                                               | 34.0%    |  |
| SIM+GAIA     | 56.0%                                                               | 31.0%    |  |
| SIM+GAIA+HIP | 56.0%                                                               | 34.0%    |  |

Importance of Historical Astrometry Rob Olling (UMd)

## **Conclusions & Future Work**

- GAIA and SIM, and SIGA in particular will open up the binary-physics field
  - Binaries can be selected:
    - according to orbital mechanics, not statistical contamination criteria
- Accurate accelerations (+vels. + jerks) are crucial (SIGA)
- Existing data (including Hipparcos) can be rereduced with GAIA astrometry:
  - Carry new ICRF to the past
    - Will improve catalogs by ~ x2
  - Existing cats need to be de-compiled Importance of Historical Astrometry Rob Olling (UMd) SIGA. SIGA, Nov. 2008

#### **Backup Slides**

Importance of Historical Astrometry Rob Olling (UMd)

How to estimate SIM acceleration accuracy???

– Maybe like this?  $d\mu/dt \sim (\mu_1 - \mu_2)/\tau$ 

#### 5 yr Mission:

- Split observing span in two 2.5 yr segments, separated by  $\tau = (T/2) = 2.5$  yr
  - Each have  $\frac{1}{2}$  data ==>  $\varepsilon_{15} * \sqrt{2}$
  - $\varepsilon_{du/dt}^2 = [(\sqrt{2}\varepsilon_{u5})^2 + (\sqrt{2}\varepsilon_{u5})^2] / (T/2)^2$
  - $\epsilon_{du/dt} = (\sqrt{8})/T \epsilon_{u_5} \sim 0.56 \text{ x } 3 \sim 1.7 \ \mu as/yr^2$
- 10 yr Mission:
  - Split observing span in two 5 yr segments, separated by  $\tau = (T/2) = 5$  yr
    - Each have 100% of 5-yr data ==>  $\varepsilon_{us}$
    - $\varepsilon_{du/dt}^2 = [(\varepsilon_{u5})^2 + (\varepsilon_{u5})^2] / (T/2)^2$
    - $\epsilon_{d\mu/dt} = 2/T \epsilon_{\mu 5} \sim 0.2 \times 3 \sim 0.6 \ \mu as/yr^2$
- Gaia 5yr:
  - $\epsilon_{d\mu/dt;GAIA} = 5/3 \times \epsilon_{d\mu/dt;SIM} \sim 2.8 \ \mu as/yr^2$
  - No follow-up
- Position accuracy at  $t_{HIP}$  ( $\Delta T=25$  yr)
  - Pro. motion:  $\Delta_{Z,1} = \Delta T \times \epsilon_{\mu 5} = 25 \times 3 = 75 \ \mu as = \Delta_{HIP}/13$
  - acceleration:  $\Delta_{7:2} = \frac{1}{2} \Delta T^2 \times \epsilon_{du/dt} = \frac{1}{2} 25^2 \times 1.7 = 531 \,\mu as = \Delta_{HIP}/2$ 
    - At ACT(1907; $\Delta$ T=110 yr) ->  $\Delta_{Z;1}/\Delta_{Z;1;ACT}$  = 0.002;  $\Delta_{Z;2}/\Delta_{Z;2;ACT}$  = 0.05; Importance of Historical Astrometry Rob Olling (UMd) SIGA Nov

## Backtrapolates: Sensitive to Mass & Period

• Order-dependent:  $\Delta_{z;n}(\tau) = Z_{ORBIT} - \zeta^n(\tau)$ 

- Can be calculated analytically

- No phase dependence for TOTAL pos. dif. – Face-on & circular:  $\Delta_{XY:n} = (\Delta_{X:n}^2 + \Delta_{Y:n}^2)^{\frac{1}{2}}$
- **<u>Periods</u>** can be estimated from  $\Delta_{XY:n}$  values
  - $-\mathcal{P}_{1,2} = 2/3 \quad \pi\tau \Delta_{XY;1} / \Delta_{XY;2} \sim P \quad \text{for } P \ge 2\tau$

$$-\mathcal{P}_{2,3} = 1/2 \pi \tau \Delta_{XY;2} / \Delta_{XY;3} \sim$$

- *P*~ P
- *P* oscillates strongly
- *P* decays (exponentially) towards P

for  $P \ge 2\tau$ for  $P \ll \tau$ for  $P \sim [0.5, 1] \times \tau$ for  $P \sim [1, 2] \times \tau$ 

#### Masses follow immediately once P is known

Ρ