1% Luminosity-Independent Distances to Nearby Galaxies with the Rotational Parallax Technique

Rob Olling, Ed Shaya (UMd)

Distance Scale & Rotational Parallaxes

Rob Olling (UMd)

Outline

- The Extra-galactic Distance Scale
- "Sanity in Errors"
 - Example: H₀, the CMB & Dark Energy
- Rotational Parallax
 - SIM & GAIA compared
- Conclusions
- Backup slides
 - More details: check Olling 2007 (MNRAS, 378, 1385) or http://www.astro.umd.edu/~olling/Papers/RP_H0_2007_Colloquium.pdf

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

The Extragalactic Distance Scale

"Standard Candle Methods:"

- Extinction & [Fe/H] may be greatest difficulties
 - For known Galactic Cepheids: $<A_v> \sim 1.7$ mag
 - GAIA expects: $\epsilon(A_v) \sim 0.1$ mag. Much better in NIR

•<u>BUT</u>: Standard Candles will be calibrated <u>much, much, much better</u> by Gaia/SIM than the current state-of-the-art

- <u>GAIA:</u>
 - <u>17,000 binaries</u> (**21 10**⁶ stars) with <u>masses</u> (distances) <~ 1% and V <~15
 - Radii for \sim 360,000 stars in Eclipsing Binary systems with 1% distances
 - Uniform metallicity & extinction scale: photometric & spectroscopic
- <u>SIM</u> will complement with the distant, very rare objects: old, metal poor, abundance peculiarities, uranium stars, PN central stars, stars of all stripes in instability strip, optical pulsars, ...

Distance Scale & Rotational Parallaxes Rob Olling (UMd) SIGA, Nov. 2008

Extragalactic Distance Scale, cntd

- "Geometric" Methods are still problematic
 - Baade-Wesselink-type methods for Cepheids
 - Velocity Gradient,
 - (H₂O) Masers in extra-galactic star formation regions [Few systems per galaxy: depends on external velocity-field data]
 - Extra-galactic (nuclear) Mega masers [Just 3 lines of sight: sensitive to systematics]
 - "Licht Echo" method; X-ray scattering of background sources; Expanding Photospheres of SNe (non=LTE) [Special events]
 - (Detached) Eclipsing Binaries; Gravitational Waves Close WDs

[No calibrators in HIPPARCOS (fixed by GAIA?)]

• [summarized in Olling 2007; and see: Gould 2000; Argon *et al* 2004, Brunrhaler *et al* 2005, Braatz et al 2006; Panagia *etal* 1991, Gould 2000, Sparks 1994, Sugerman 2006; Draine & Bond 2004; Nugent *et al* 2006; Paczynski & Sasselov 1997, Fitzpatrick *et al* 2004, Stanek *et al* 1998; Cooray & Seto 2005; Freedman *et al.* 2008]

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

SIGA, Nov. 2008

[Applied to LMC by GAIA]

[p-factor]

Need Sanity in Errors

• <u>Need independent cross-checks:</u>

different methods & objects

to measure same parameter(s)

- Otherwise: results + errors can not be trusted
- Absolute distance (H₀) errors also important for <u>cosmology</u> & <u>dark energy</u>
- An absolute <u>distance</u> to a LG galaxy will eventually lead to an accurate H₀

H₀, the CMB & Dark Energy

• From the shape of the power spectrum, **WMAP** "directly" [e.g., Hu 2005] **measures** the **physical densities** (ρ_{matter} and ρ_{baryon})

- i.e., NOT the $\rho_{\rm crit}$ -normalized densities
- ρ_{crit} = 3 H₀² /(8 π G) is the <u>critical density of Universe</u>
 - $\omega_{b} = \Omega_{b} h^{2}$ \propto the <u>physical</u> baryon density
 - $\omega_{m} = (\omega_{b} + \omega_{DM}) = \Omega_{m} h^{2} \propto the <u>physical</u> matter density$
 - h = $H_0/100$

$$\Omega_{m} = \frac{\rho_{b} + \rho_{DM}}{\rho_{crit}} = \frac{\omega_{m}}{h^{2}} \text{ and } \epsilon_{\Omega_{m}} = \sqrt{\left(\frac{\epsilon_{\omega_{b}}}{\omega_{b}}\right)^{2} + \left(2\frac{\epsilon_{h}}{h}\right)^{2}}$$

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

H₀, CMB and Dark Energy (cntd)

$$\Omega_{m} = \frac{\rho_{b} + \rho_{DM}}{\rho_{crit}} = \frac{\omega_{m}}{h^{2}} \text{ and } \epsilon_{\Omega_{m}} = \sqrt{\left(\frac{\epsilon_{\omega_{b}}}{\omega_{b}}\right)^{2} + \left(2\frac{\epsilon_{h}}{h}\right)^{2}} \text{ and s}$$

and similar for $error_{DE}$

- IF one wants to determine w (or Ω_m), THEN need to know H₀ !!
 - Now: EOS of Dark Energy is known to +/- 7%, and
 ω_m and H₀ contribute about equally
- Decreasing error on ω_m (ω_b) leaves constant contribution from H₀ ===> hardly any decrease in ε_w
- Better (x 8) determination of ω_m with *PLANCK*,
- Need better (x10) determination of H_o (e.g., with SIM-Lite)

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

Rotational Parallax Distances

- Distance (D) to Local Group Spirals can be determined via the Rotational Parallax Method [Peterson & Shao, 1997; Olling & Peterson, APH/0005484; Olling, 2007, MNRAS, 378, 1385]
- Principle very straightforward:
 - Measure <u>circular rotation</u> via radial-velocities (V_c)
 - Measure <u>circular rotation</u> via proper motions ($\mu_c \propto V_c / D$)
 - Distance $\propto V_c / \mu_c$ EXPECT: Unbiased Distances

Accuracy of several % out to ~1 Mpc

- Requires: Large-scale ordered motions (e.g., rotation) Ground-based radial velocities and •

 - Space-based proper motions at the $< \sim 10 \mu as/yr$ level

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

- For Circular Orbits:
 - -minor axis: $\mu_x = V_c/(\kappa D)$
 - -Major axis: $\mu_{\mathbf{Y}} = \mathbf{V}_{\mathbf{c}} \cos(\mathbf{i}) / (\kappa \mathbf{D})$
 - -Major axis: $\mathbf{V}_{\mathbf{R}} = \mathbf{V}_{\mathbf{C}} \sin(\mathbf{i})$

Rotational Parallax Illustrated

M 31: *i~*77°

D~0.84 Mpc

 $V_c \sim 270 \text{ km/s}$

 $\mu_c \sim 74 \ \mu as/yr$

- Three equations,
- Three unknowns,
 - Three solutions
 - -Several Approaches

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

The Rotational Parallax Method (cntd)

•How About?

- -Space-motion of the galaxy
- -Warp
- -Non-circular motions
 - Spiral-arm streaming motions
 - Bar-induced motions
 - Tidal distortions
 - Et cetera
- -Rotation of astrometric grid
 - Any physical process that produces proper motion will have a corresponding radial velocity
 - Grid translation: don't care $=> V_{SYS}$
 - Grid Rotation: no V_{RAD} equivalent ==> take out

!! The RP method is VERY ROBUST !!

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

General Rotational Parallaxes

•<u>Unknowns:</u>

Total Space Velocity:

• $\mathbf{V}_{\text{TOTAL}} = \mathbf{V}_{\text{SYS}} + (\mathbf{V}_{\text{CIRC}} + \mathbf{V}_{\text{PEC}})$	+ V	σ
• = systemic + circular + peculiar \Rightarrow 3 + 1 + 3 Coordinate system:	+ ran +3 =	dom 10
<u>Coordinate System.</u>	·	2
• Origin of coordinate system	\Rightarrow	Z
 Position angle of major axis (\$) 	\Rightarrow	1
 Distance and Inclination 	\Rightarrow	2
Star position in galaxy	\Rightarrow	3
TOTAL:		18 unknowns
DBSERVABLES (per star):		
<u>2 positions</u> + <u>2 proper motions</u> + V_{RAD}	=	5 knowns

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

• <u>However:</u>

- Many unknowns are "shared" between test particles:

 Center of galaxy + PA: 	3 shared vars.
 Systemic velocity: 	3 shared vars.
 Rotation Speed: 	1 shared var.
 Distance & inclination 	2 shared vars.
 Velocity dispersion: 	3 shared vars.
• TOTAL	12 shared variables

- -Left with: 3 V_{PEC}'s & x,y,z: 6 star-dependent unknowns
- No solution because we have 5 observables per star
- -⇒ Eliminate 2 more variables
 - -e.g., assume $\langle V_{D,z} \rangle = 0$ and $\langle z \rangle = 0$
 - -4 star-dependent unknowns left

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

- Then: $(4 N_* + N_{sv})$ unknowns 5 N_{*} observables
- \Rightarrow Solution if: 5 N_{*} >= (4 N_{*} + N_{sv}) N_{*} >= N_{sv}
- In our example, if $N_* >= N_{sv} = 12$
- Get all parameters from 12 stars/galaxy
- Alternatively, allow for corrugations
 - $z(\theta) = z_0 + \sum_{n=1}^{nz} A_n \cos(2n\pi\theta) + B_n \cos(2n\pi\theta)$
 - $V_{p;z}(\theta) = V_{p;z;0} + \sum_{n \leq p \leq n} C_n \cos(2n\pi\theta) + D_n \cos(2n\pi\theta)$
 - \Rightarrow Increase N_{sv} & N_{*} by: 2 * (n_z + n_{vpz} + 1)

• If peculiar motions have a "long-range" component that can be determined from a number of stars, a proper solution for the distance will be possible.

- Similar Procedures are/will-be employed for:
 - Distance determination with maser-regions in galaxies
 - ~17 H_2O Masers in M31 & M33 at SKA sensitivity (Barely exceeds the minimum number of shared variables)
 - Velocity-field/Rotation Curve determination of Milky Way

Rotational Parallax: Observability

Need bright sources:

- Minimize confusion & Maximize observing speed
 - All stars share (almost) the same proper motion
- Enough bright stars available

•	M 31's	"ring of fire	″ (~0.6° - 1.5°)		
	•	~300	GSC2	(V	<= 17.5)
		~360	Massey et al (2006)	(V	<~ 16.5)
•	M 33:	300	2MASS stars	(K _s	<~ 15)
•	LMC:	23,000	UCAC stars	(V	<~16)

- Also: Need least disturbed galaxy
- Our Preference for SIM: M31, M33
- Low SIM "cost,"
 M31 in 8-32 days (1/8 ½ Key Project)

[uses wide-angle astrometry: can do better (intermediate-angle)]

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

GAIA & SIM: RP Performance, Graphically

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

SIM & SIM : RP Performance

Massey et al catalog:

t_SIM	V_SIM	$\Delta D/D$	Number	$\Delta \mu_{\text{FOUIV}}$
[days]	[mag]	[%]	of Stars	µas/yr
8	15.6	0.64	153	$0.20 \sim 3.5$ SIM-NA accuracy?
16	15.9	0.53	232	0.17 ~3.0 SIM floor?
32	16.3	0.42	365	0.13
GAIA 400	16.5	0.50	400	0.16 ~1/2 GAIA_GRID
GAIA_BEST	21.1	0.36	8,981	0.08 ~1/4 GAIA_GRID

Carlsbad Meridian Catalog (#14)

t_SIM	V_SIM	$\Delta D/D$	Number	$\Delta \mu_{\text{FOUIV}}$
[days]	[mag]	[%]	of Stars	µas/yr
8	16.8	1.05	59	0.34
16	17.1	0.84	91	0.27
32	17.3	0.65	153	0.21
GAIA 150	17.2	1.50	150	0.48
GAIA BEST	18.9	1.00	463	0.32

typical projected orbital speed $\sim 16 \,\mu as/yr$

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

SIGA pros & cons

GAIA might do about as well as SIM for M31 because:

- there are many stars available
- BUT, ↓
 - Can GAIA go a factor of 10 20 beyond frame-rotation limit?
 - Can GAIA perform in crowded field such as M31 with $\sim 2 \ 10^6 \ \text{star/deg}^2$ and a variable background?

(varying scan orientations ==> varying contributions from faint companions)

- вит, **1**

- GAIA can boost? accuracy via "local astrometry" on M31

SIM has clear advantage because:

- needs fewer (brighter) stars, less crowded conditions
- only goes factor of 2? beyond narrow-angle mode
- superior for smaller/more distant galaxies

In vein of my "Sanity in Errors" slogan, GAIA & SIM provide independent test at 0.5% distance level

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

Conclusions

1% Galaxy Distances will be possible

- <u>Luminosity-Independent</u>
 - SIM can do M31 & M33 in reasonable amount of time
 - Gaia will do LMC, SMC?? & M31?

•SIM & GAIA provide cross-check (v<=16.5) $\Delta D/D=0.5\%$ level ABSOLUTELY CRUCIAL

- RP-targets in LG galaxies: (4+2)D phase-space data
- 1% Distance to LG galaxies will calibrate 2^{ndary} calibrators (Cepheids, TRGB, EBs, ...) ==> H₀

• Transfers Solar N.hood (<1%) stellar calibration to LG galaxies

H₀ is important for Cosmology

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

Backup Slides

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

The Rotational Parallax Method

• **GENERAL CASE**, any position in galaxy

 $\cos^{2}(i) = -(y' \mu_{y}) / (x \mu_{x})$

$$D_{G} = V_{R} / \kappa * [-(y'/\mu_{Y}) / (x \mu_{X} + y' \mu_{Y})]^{-1/2}$$

Flat Rotation Curve, Circular Orbits, HI Inclination

 $D_{iHI} = V_R(\text{major axis}) / [\kappa * \sin(i) * \mu_x(\text{minor axis})]$ $\epsilon(D_{iHI})^2 = D^2 [(\epsilon(V_R) / V_R)^2 + (\epsilon(\mu_x) / \mu_x)^2]$

Flat Rotation Curve, Circular Orbits, Unknown Inclination

 $cos(i) = |\mu_{v'}(major axis)| / |\mu_{x}(minor axis)|$

 $D_{mM} = V_R * [(\mu_{y'}(major axis))^2 - (\mu_x(minor axis))^2]^{-1/2}$

Distance Scale & Rotational Parallaxes Rob Olling (UMd) SIGA, Nov. 2008

•Warp?

$-V_{c}(R) = V_{c}(R_{0}) + dV/dR * (R-R_{0})$ i(R) = i (R_{0}) + di/dR * (R-R_{0})

- -Each relation adds 2 unknowns (zpt & slope)
 - •Would require >(12+2+2)=16 stars

The Rotational Parallax Method (cntd)

•Order of magnitude Estimates:

−**M 33:** *i*~56°, D~0.84 Mpc, V_c ~ 97 km/s $\Rightarrow \mu_c \sim 24 \mu as/yr$

-**M 31:** *i*~77°, D~0.84 Mpc, V_c ~270 km/s $\Rightarrow \mu_c \sim$ 74 µas/yr

-LMC: *i*~35°, D~0.055 Mpc, V_c~ 50 km/s $\Rightarrow \mu_c \sim 192 \mu as/yr$

Importance of Random Motions (σ) ~ "measurement errors"

- **M 33:** $V_C/\sigma = 9.7 \Rightarrow \epsilon_{D,HI} \sim (\sqrt{2})/9.7 \sim 14.5$ % (per star)

- M 31: $V_c/\sigma = 27.0 \Rightarrow \epsilon_{D,HI} \sim (\sqrt{2})/27.0 \sim 5.2 \%$ (per star)

– LMC: $V_c/\sigma = 2.5 \Rightarrow \epsilon_{D,HI} \sim (\sqrt{2})/2.5 \sim 56.5$ % (per star)

Rotational Parallaxes: Accuracy

The equations to solve

$$\begin{split} \kappa \boldsymbol{D}\mu_{\boldsymbol{x}} &= \boldsymbol{V}_{\boldsymbol{sys},\boldsymbol{x}} + \boldsymbol{V}_{\boldsymbol{\sigma},\boldsymbol{x}} + \boldsymbol{V}_{\boldsymbol{c},\boldsymbol{x}} + \boldsymbol{V}_{\boldsymbol{p},\boldsymbol{x}} \\ \kappa \boldsymbol{D}\mu_{\boldsymbol{y}'} &= \boldsymbol{V}_{\boldsymbol{sys},\boldsymbol{ry}'} \sin \boldsymbol{i}_{\boldsymbol{s}} - (\boldsymbol{V}_{\boldsymbol{p},\boldsymbol{z}} + \boldsymbol{V}_{\boldsymbol{\sigma},\boldsymbol{z}}) \cos(\boldsymbol{i}) + (\boldsymbol{V}_{\boldsymbol{c},\boldsymbol{y}} + \boldsymbol{V}_{\boldsymbol{p},\boldsymbol{y}} + \boldsymbol{V}_{\boldsymbol{\sigma},\boldsymbol{y}}) \sin(\boldsymbol{i}) \\ \boldsymbol{V}_{\boldsymbol{r}} &= \boldsymbol{V}_{\boldsymbol{sys},\boldsymbol{ry}'} \cos \boldsymbol{i}_{\boldsymbol{s}} + (\boldsymbol{V}_{\boldsymbol{p},\boldsymbol{z}} + \boldsymbol{V}_{\boldsymbol{\sigma},\boldsymbol{z}}) \sin(\boldsymbol{i}) + (\boldsymbol{V}_{\boldsymbol{c},\boldsymbol{y}} + \boldsymbol{V}_{\boldsymbol{p},\boldsymbol{y}} + \boldsymbol{V}_{\boldsymbol{\sigma},\boldsymbol{y}}) \cos(\boldsymbol{i}) \end{split}$$

are mildly non-linear with reasonably well-known initial conditions: Good solutions expected

Problem investigated by Olling & Peterson

[2000, aph/0005484]

- Solve V_r relation for (V_{p,z}+V_{\sigma,z}) and substitute in $\mu_{y'}$
- Or solve V_r relation for (V_{c,y}+V_{p,y}+V_{σ,y}) and substitute in $\mu_{y'}$
- Or solve $\mu_{y'}$ relation for $V_{c,y} = V_{c,x} * x/y$ and substitute in μ_x

Rotational Parallaxes: Accuracy (cntd)

Rewrite equations employing observables x,y'

- $\mu_{y'}(V_R) = \alpha_{y'r} * V_R + \gamma_{y'r}$
- μ_x (V_R; y'/x) = $\alpha_{xr}^* V_R^* y'/x + \beta_{xr}^* y'/x + \gamma_x$
- $\mu_{x} (\mu_{y'}; y'/x) = \alpha_{xy'} * \mu_{y'} * y'/x + \beta_{xy'} * y'/x + \gamma_{x}$
- Solve for unknown $\alpha,\,\beta$ and γ coefficients
 - The α and γ coefficients yield the desired parameters • $\cos^2(i) = -1 / \alpha_{xy'}$
 - D = $1 / [\alpha_{v'r} \kappa \tan(i)]$
 - Non-circular motions and $V_{_{SYS}}$ appear only in $\gamma_{_{V'r}}$ and βs
- Accuracy of fitted parameters follows from back-substitution and Fourier analysis of velocity field

Rotational Parallax: Expected Results.

Proper Motion Accuracy [µas/yr]

Achievable distance errors as a function of proper motion errors: <u>LEFT: random errors,</u> Symbols: accuracy of radial velocity data (2.5 – 10 km/s) 400 Stars used from: Olling & Peterson (2000)

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

<u>Distance accuracy</u> (LEFT panel) and <u>Systematic Effects</u> (3 RIGHT panels) as a function of proper motion accuracy

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

Probing the Hubble Flow:

- Need to go to >100 Mpc $\epsilon(H_0) \sim V_{pec}/V_{Hubble} \sim 200$ km/s / (100 Mpc * 75 km/s/Mpc) ~ 2.6%
- The only known geometric method that probes that far:

Mega Maser Distance Uncertainties:

- N 4258 Distance: 7.2 ± 0.3 (random) ± 0.4 (systematic)
 - mostly due to orbital eccentricity [Argon 2007],
 - Up to e~0.3 due to, e.g., binary black holes

[Eracleous, etal 1995]

- But ruled out by monitoring [Gezari, Halpren, Eracleous, 2007]
- Not clear that elliptical orbits exist, if not >60% has emissivity variations [Storchi-Bergmann etal, 2003]

Distance error in case of unmodeled eccentricity:

• $D_{CIRC} = D_{TRUE} [(1 \mp e)^3 / (1 \pm e)]^{1/2} \sim D_{TRUE} [1 \mp 2e]$

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

Astrometry & Cosmology

• CMB, high-z galaxy data, Ly- α forest & BBN yield: Hubble Constant = H₀ = 71 ± 2 ± 7 [km/s/Mpc] Age = t₀ = 13.7 ± 0.2 [Gyr] Matter Density = Ω_m = 0.27 ± 0.02 [ρ_{CRIT}] Total/Baryon Matter = Ω_m / Ω_b = 6.1 ± 1.1 Primordial Helium = Y_p = 0.2482 ± 0.0004

- Astrometry of M31 (M33) \Rightarrow strong limits on H₀
- Astrometry of Galactic Objects can set relevant limits on t₀, Y_p and Star Formation History

[Spergel et al, 2003, 2006; Freedman et al 2001; Mathews etal, 2005; Madau etal, 1996, this talk]

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

H_o, CMB and Dark Energy (cntd)

- WMAP yields: location (/A) of the acoustic peak:
- Cosmology yields:
 - 1) size of the acoustic oscillation
 - 2) the angular-size distance (DA) relation

$$D_A = a_* \int_{a_*}^{1} \frac{1}{a^2 H(a)} da \quad \text{with} \quad \frac{H(a)}{100} = \sqrt{\frac{\omega_m}{a^3} + \frac{h^2 - \omega_m}{a^{3(1+w)}}} \quad \text{and} \quad \Omega_{tot} = 1$$

- This is an integral equation with two unknowns:
 - H_0 and
 - "w" the Equation of State (EOS) of Dark Energy
- IF the Cosmological Constant is the Dark Energy, THEN w=-1 and: WMAP determines H_0

H₀, CMB and Dark Energy (cntd)

- However, this may *not very accurate.* The Assumptions were:
 - Flat Universe
 - Dark Energy has <u>constant</u> EOS
 - Dark Matter does not cluster, no tensor modes, no quintessence, no running spectral index, no strings, no domain walls, no non-Gaussian fluctuations, no deviations from GR, et cetera
- Allowing for a variable EOS of Dark Energy, Hu (2005) concludes that:
 - ``... the Hubble constant is the single most useful complement to CMB parameters for dark energy studies ... [if $H_0(z)$ is] ... accurate to the precent level

Alternatively, one can (try to) determine the **ages**:

 $-\tau = {}_{0}\int^{1} da / [a H(a)] \Leftrightarrow ages of oldest stars$ $-\tau(z) = {}_{0}\int^{a(z)} da / [a H(a)] \Leftrightarrow ages of high-z galaxies$ [e.g., Bothum etal 2006, Jimenez etal 2003, Simon 2005]Summarized in Figure 4 of Spergel etal, 2004

Fig. 4.— The Λ CDM model fit to the WMAP data predicts the Hubble parameter redshift relation. The blue band shows the 68% confidence interval for the Hubble parameter, H. The dark blue rectangle shows the HST key project estimate for H_0 and its uncertainties (Freedman et al. 2001). The other points are from measurements of the differential ages of galaxies, based on fits of synthetic stellar population models to galaxy spectroscopy. The squares show values from Jimenez et al. (2003) analyses of SDSS galaxies. The diamonds show values from Simon et al. (2005) analysis of a high redshift sample of red galaxies.

A, Nov. 2008

H₀, CMB and Dark Energy (cntd)

- Many groups pursue other methods to determine some (combination of) parameter(s) that constrain the "integral"
 - Luminosity-Distance relation from Supernovae Ia
 - $D_{L}(z) = D_{A}(z) / a(z)^{2}$
 - Baryon Oscillations (sensitive to local galaxy density)

- Volume(z) = $[\underline{D}_A(z) / a(z)]^2 / \underline{H}(z) * \Omega_{sky} \Delta z$

- Galaxy Cluster Abundance
 - Depends on *Volume(z)* and non-linear structure growth
- Weak Lensing
 - Depends on: $\underline{D}_A(z)$, $\underline{H}(z)$ and <u>structure growth</u>
- [e.g., Albrecht et al 2006 = DETF]

H₀, CMB and Dark Energy (cntd)

 We use the Spergel etal (2006/7) WMAP & "other data" to approximate the relations between the various parameters (P_i = a_{ii} + b_{ii} P_i) :

$$\Omega_{\Lambda} = a_{\Lambda m} + b_{\Lambda m} \Omega_{m}$$
$$\Omega_{K} = a_{K\Lambda} + b_{K\Lambda} \Omega_{\Lambda}$$
$$w = a_{wK} + b_{wK} \Omega_{K}$$

 For a constant EOS, but a Universe of general curvature

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

To arrive at:

 $w = a_{wK} + b_{wK} (a_{K\Lambda} + a_{\Lambda m} b_{K\Lambda}) + b_{\Lambda m} b_{K\Lambda} b_{wK} + \omega_m / h^2$

= (-0.83 ± 0.11) – (0.56±0.06) $\omega_{\rm m}$ / h²

Error on EOS as a function of $\varepsilon(\omega_m)$:

$$\epsilon_{w}^{2} = \dots + \boldsymbol{b}_{\Lambda m} \boldsymbol{b}_{K\Lambda} \boldsymbol{b}_{wK} \left[\left(\frac{\epsilon_{\omega_{m}}}{\boldsymbol{h}^{2}} \right)^{2} + \left(\frac{2 \omega_{m} \epsilon_{\boldsymbol{h}}}{\boldsymbol{h}^{3}} \right)^{2} \right]$$

• In Figure: curves from top to bottom for $\epsilon(H_0) = \epsilon(H_0; now) * [1, 1/2, 1/4, 1/10]$

[Olling, 2007, MNRAS, 378, 1385]

Distance Scale & Rotational Parallaxes Rob Olling (UMd)

H₀, CMB and Dark Energy (cntd)

- The Dark Energy Task Force [Albrecht et al 2006] recommends several approaches to determine the "evolution" of the EOS:
 - Stage I: Current knowledge
 - STAGE II: Projects finishing soon (including *PLANCK*)
 - STAGE III: Photo- (spectro-) redshifts on 4^m (8^m) telescopes
 - STAGE IV: Large Synoptic Telescope, Joint Dark Energy Mission, Square Kilometer Array

- At Stage IV, accurate H_0 knowledge matters <~50%

• Unpublished Minority Opinion (Freedman & Hu): Spend effort on determination of HO

