
Intel Corporation Red Team Internship
Mitchell Smith

Mitchell.smith132@gmail.com

Science, Discovery, and the Universe

Computer Science - Cybersecurity

Going Remote
I joined Intel Corporation as

a security research intern in

November of 2020, and I am

currently working with an

Fuzzing for Security
Fuzzing is a form of dynamic

analysis which uses random

input generation and

mutation to test a compiled

aaa

Cyclomatic Complexity
Some common metrics used to

judge source code are unit test

coverage, line count, and

comment to code ratio. A

similar approach is to compute

the number of independent

paths through a program

aaaaaa

Fuzzing from 10,000 ft

Why FPGAs?

FPGAS can be thought of as generalized

computer processors. They possess a vast

array of logic blocks which allow for circuits

to be reconfigured after production.

Code Review
Code review is an iterative

refinement process which

requires several developers,

software

Impact
I identified three unique bugs

in the firmware codebase

while fuzzing. I also worked on

preparing our harnesses for

aaaaaaaaaaa aa

Future Work

Acknowledgements
I would like to thank my supervisor

Dr. Brian Delgado, my manager

Geoffrey Strongin, and the rest of my

colleagues at Intel Corporation for the

wonderful internship experience.

internal red team that focuses on Field

Programmable Gate Array (FPGA) security. I

report directly to my team’s leader, Dr. Brian

Delgado, yet my internship experience has

been fully remote due to the pandemic. My

initial job description was to assist with

fuzzing low-level firmware code, and I have

since had the opportunity to branch out

and work on a variety of other tasks. I have

learned a great deal about research

cybersecurity since joining the team.

.

especially ones who did not work on the

code, to scrutinize the program of interest.

Any bugs found during the process are

patched prior to product rollout. a

binary. Fuzzers will continue to test a given

target until either the developer terminates

their execution, or an input is generated

which causes the source code to crash. The

goal of our project is to apply LibFuzzer, an

open-source, coverage-guided fuzzing

utility, to a vast array of firmware code. Any

crashes found can be invaluable when

searching for potential vulnerabilities.

aaaaaa

• Prepare variable tables for
harness generation

• Add fuzzing automation to
internal CI system

• Smart target recognition

Fuzzing

• Test programs with abstract
symbols in place of
concrete parameters

• Validate logic, identify
errors in complex code

Symbolic
execution

• Automate style assertions

• Add regression testing

• Introduce taint tracking

Expand
code
query
tools

• Define network of entities
and connections between
them

• Examine possible states

Reach-
ability

analysis

• Identify unit test targets, develop
corresponding harness

Establish entry points

• Generate pseudorandom input,
execute program under test

• Trace CMP instructions, apply
sanitizers during runtime

• Check coverage, mutate
interesting inputs

Begin fuzzing

• Patch potential bugs, maintain
spanning set of inputs in corpus
(enable regression testing,
supplement unit framework)

Report results

Develop
• Prepare source code under

test

Review

• Divide program regions and
subprocesses, assign to
reviewers

• Scrutinize: check design,
apply fuzzing, constraint
solvers, static analysis…

Refine • Update source as needed

their first internal rollout. To support this task, I

helped establish internal style guidelines,

documented related tools (e.g. queries for

global variable filtering), and developed

several automation scripts which I hope will

outlive my time in this role (example below).

aaa

Parse CLI
arguments

Map firmware,
distribute
harnesses

(opt) Create jobs,
parallelize

Generate unit test
+ harness

coverage, auto-
fuzz

Generate
compilation

reports, update
repository

(opt) Cleanup,
prepare mega-
make for code

queries

(cyclomatic complexity) and use this value

to gauge its intricacy. The complexity of any

given program can thus be measured as a

function of its length, conditionals, nesting,

and so on. I developed a script to compute

this statistic across any given C codebase.

Tools used: pmccabe, GNU complexity

aaaaaaaa

Parse code

Generate control flow graph

Compute independent paths

mailto:my.email@gmail.com

