(LRSI
S I3
o

30

I8 &

" Attempting Performance Improvements

of Subhalo and Particle Trajectory Analysis (SPARTA)

>Jakob Wachter | jwachtel@terpmail.umd.edu
>./computer science --physics & SDU

>Research Question >Data Collected >Conclusions

SPARTA is a high-performance
framework used to analyze
astrophysical simulations.
These analyses can take a long
time to run, and we worry that
they do not take full
advantage of our computing
power. Can multithreading fix
that, and improve runtimes?

>Context

Many high-performance
scientific codes take
advantage of a computing
technique, known as
parallelization, to distribute
the computations done across
many different processors.
SPARTA is one such program.
However, another distributed
computation technique exists,
known as multithreading. This
is when computation is split
into many chunks, and the
processor is able to, in
effect, juggle these tasks to
ensure that it is always doing
something. Our hope is that by
introducing multithreading to
SPARTA, we can decrease the
run-time of its large-scale
analyses by ensuring that
there is less downtime between
processors.

>Methodology

My research consisted of
analyzing the following phases:

1. Analyzing the runtime of
SPARTA to determine where
bottlenecks occurred, and see
if we could model its behavior;

2. Implementation of
multithreading algorithms and
techniques into the existing
SPARTA code;

3. Testing the updated SPARTA
code to determine if speedup
was observed.

Phases 2 and 3 were performed
iteratively until no further
techniques were readily
implementable.

Runtime for Various Test Cases

MPIONly 8 MPHOpenP Hybrid

>./fiqgure_1:

$ The original MPI parallelized
version of SPARTA versus the new
hybridized OpenMP+MPI code. Note
that the original code wins out in
almost every case.

TIME LOSS BY TEST

>./figure_2:

$ Time lost per test case versus
the original MPI code. Note that
the time loss is roughly
proportional to the number of MPI
processes used.

It is evident that the current
implementation of OpenMP
introduces a large overhead
that counteracts the utility
of implementing the
multithreading into the
program. Future work will have
to be done to mitigate the
overhead associated with some
of the directives that OpenMP
uses, as at the moment the
algorithms do not appear to
scale as anticipated.

Once work is done in this
regard, more work can be done
with respect to implementing
OpenMP algorithms in other
parts of the program. At the
moment, the OpenMP utilities
are only used in two distinct
locations, but have the
potential to be viable in many
more portions of the code once
these major issues are
corrected.

>Acknowledgements

The author of this poster
would like to thank:

1. Dr. Benedikt Diemer, for
being a wonderful mentor and
advisor;

2. Dr. Alan Peel and Mrs. Erin
Thompson, for their kindness
and support as the directors
of the SDU program;

3. their family and close
friends, for supporting their
scientific endeavors.



