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ABSTRACT

Design possibilities are examined for the implementation of narrowband CARMA spectral-
line modes using digital filtering techniques. The model designs are based on an analog pre-
filter followed by one or more stages of digital filtering and decimation that narrow and shape
the input analog bandpass to create the desired observing window. The pre-filter is the same one
used to construct the narrowest analog-based spectral-line mode. It is found that for a 62 MHz
pre-filter, 31 MHz, 8 MHz and 2 MHz observing bands exhibiting � 0 � 5 dB of passband ripple
(peak-to-peak, analog pre-filter excluded), 30 dB of stopband rejection, and a relative transition
width of � 1/64 (per edge) require � 50% of the digital logic available in one COBRA digi-
tizer FPGA. It is therefore possible to implement the corresponding spectral modes using CO-
BRA digitizer cards without resorting to narrowband analog filters. Requantization after digital
processing is found to reduce efficiency by 3-6%, depending on the number of bits retained
between decimation stages. Assuming as-is reuse of COBRA hardware, the 31 MHz mode is
feasible only if digital frequency modulation is used. Spectral bandwidths � 2 MHz are also
easily supported in designs based on frequency modulation (with small additional reductions in
efficiency).
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1. CARMA First-Light Digitizer Cards

As part of the proposed CARMA first-light correlator plan (Beasley, Woody, and Hawkins 2002; Beasley,
Hawkins, Rauch, and Woody 2003), reuse of both COBRA correlator cards and COBRA digitizer cards is
envisioned. A COBRA digitizer card contains two digitizer modules, each of which samples one analog
telescope signal at a rate of 1 GHz (with 2 bits of precision), and thereby supports observing windows up to
500 MHz wide. The first-light plan includes both this 500 MHz wideband observing mode and a series of
spectral-line modes ranging in bandwidth from 250 MHz to 2 MHz. A detailed analysis of correlator card
performance for the proposed spectral-line modes can be found in Rauch (2003).

The downconverters place the 500 MHz wideband input at 500 MHz to 1 GHz in absolute frequency to
avoid electronics issues at low frequencies. To prevent aliasing at a 1 GHz sample rate, analog filters are
used to remove signal power below 500 MHz and above 1 GHz before feeding the signal to the digitizer
modules. The act of sampling then neatly aliases the signal down to baseband (0-500 MHz). One method
of implementing the CARMA spectral-line modes is to replace the 500 MHz filter with a narrower analog
filter centered somewhere in the 500-1000 MHz region; so long as the nominal filter band edges are located
at integer multiples of its passband width, the sampled, band-limited signal will still neatly alias down to
its corresponding baseband location. This is the method by which the 250 MHz and 125 MHz spectral-line
modes will be implemented. However, it becomes progressively more difficult (i.e., expensive) to extend this
approach to the narrowband modes—accommodating their finer channelization implies relative transition
widths sharper than practical analog filters can achieve. In addition, analog filters consume precious board
space inside the spectral downconverter, hence it is desirable to minimize their number.

To avoid the issues associated with narrowband analog filtering, a digital filtering approach can be used.
In this scheme, the digitized analog signal is processed by an FPGA (a programmable logic device) on the
digitizer card to remove unwanted frequency components before decimating the signal to a Nyquist-limited
sample rate (i.e., twice the final spectral bandwidth). The rate-reduced signal can then be transmitted to the
correlator cards for cross-correlation analysis. This is the method being proposed for the 2 MHz, 8 MHz,
and 31 MHz spectral-line modes. The purpose of this memo is to determine the feasibility of this option
assuming the reuse of COBRA digitizer hardware. The results can be easily generalized to estimate logic
requirements under other circumstances, such as for the next-generation CARMA correlator.

2. Digital Filtering and Decimation

2.1. Linear Digital Filters

Digital filtering can be performed in either the time or frequency domain. However, for a lag correlator
receiving a continuous stream of samples in real-time, only the time domain approach is feasible for the
sample rates of interest in radio astronomy. The general form of a linear digital filter is
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where xi are the input samples, yi are the filtered output samples, and the constants ai and bi are the filter
coefficients. Through suitable choice of coefficients, low-pass, high-pass, and band-pass filters, as well as
integrators, differentiators, etc., can be produced. For real-time work, the filter must be causal—that is, the
output yn must not depend on future samples xk, where k � n; this implies that ai � 0 for i

� 0. In addition,
for practical filters only a finite number of coefficients can be non-zero. Hence in practical real-time work

yn �

M

∑
i � 0
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�

N

∑
i � 1

biyn � i �

where M and N define the orders of the filter. Filters for which N � 0 are called finite impulse response
(FIR) filters because if xn � 0 for all n � n0, then yn � 0 for all n � n0

�
M. When N � 0 the filter is an

infinite impulse response (IIR) filter since (in general) the recursive feedback from previous output samples
yk is able to keep yn

�
� 0 as n � ∞ even if xn � 0 for all n � n0.

Although IIR filters generally require fewer coefficients than FIR filters to achieve a specified response, FIR
filters offer two important advantages: first, they can be made to have exactly linear phase, meaning that the
group delay between input and output is independent of the frequency content of the signal; second, they are
always numerically stable, as well as less susceptible to degradation due to finite-precision arithmetic—an
especially important consideration for implementation in programmable logic devices, where minimizing
arithmetic precision also minimizes the logic requirements of the resulting circuit. Therefore, only linear-
phase FIR filters will be considered here. Note that the linear phase constraint implies symmetry within the
coefficients ai; there are only M ��� M � 2 � unique values for an order-M filter.

2.2. Decimation Methods

In the present case, the purpose of the digital filtering is to facilitate reduction of the sample rate from 1 GHz
to twice the bandwidth of the corresponding spectral-line mode (the Nyquist-limited rate) with acceptably
low aliasing of out-of-band power into the desired observing window, and with acceptably flat response
within the window itself. These criteria translate directly into tolerances for passband ripple and stopband
rejection of the digital filter. In addition, the transition between passband and stopband should be sharp
enough to preserve the integrity of the frequency channels at each edge of the passband.

It is important to keep in mind that the signal processing objective is decimation, not filtering per se. In
other words, the most effective design process is not to create a generic digital filter whose output happens
to be suitable for decimation; rather, the specialized design methods applicable only to decimators drive
the filtering approach. For the narrowband CARMA spectral-line modes in particular, the task is not only
decimation, but decimation by a large factor (256-to-1 for the 2 MHz spectral mode and 64-to-1 for the
8 MHz mode). Highly efficient implementations of L-to-1 decimators, where L � 1, can be created using
a multirate, multistage technique (e.g., Crochiere and Rabiner 1983). In this approach, the anti-aliasing
filter and decimation is implemented as a cascade of several independent decimator stages. If there are
I stages, where stage i implements an Li-to-1 decimator and L � ∏I

i � 1 Li, then the cascade of I stages
together constitute an L-to-1 decimator. To understand the advantage of the multistage approach, note that
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the order of anti-aliasing (FIR) filter needed to obtain an absolute transition width of ∆ f scales as M ∝ f s � ∆ f ,
where fs is the sampling frequency at the input of the filter. Since in the early stages of a multistage stage
implementation the passband of interest occupies only a small fraction of the Nyquist interval (assuming
L � 1), and since significant decimation will be done by succeeding stages, the early anti-aliasing filters
need only prevent aliasing into the narrow, final passband—there is no need to curtail aliasing into all
frequencies below fs ��� 2Li � , as would be the case for a generic Li-to-1 decimator. Hence the early anti-
aliasing filters can have a much larger transition width ∆ f i � ∆ f0, where ∆ f0 is the transition width required
by the final spectral window; as a consequence, the early filters are quite small and simple. Although the
transition width of the filter for stage I must still be ∆ f0, by this time the sample frequency fs has been
reduced by a factor of L � LI � 1, and thus the final filter’s order can be reduced by this same amount. In this
way, the cascade in total can require many fewer coefficients than a single-stage decimator would, assuming
L � 1 (and that L can be factored into suitably small cofactors Li). As an added bonus, these smaller filters
are less subject to round-off errors than a single large filter would be, and their coefficients can be quantized
to fewer bits.

Consider now the implementation of a single L-to-1 decimation stage consisting of an anti-aliasing FIR filter
followed by rate compression by a factor of L (in which every L-th output sample is retained and the rest
discarded). Arranged in this form, the FIR filter must operate at the input sample rate—only to have all but
a fraction 1 � L � 1 of the outputs thrown away by the rate compressor; this is very inefficient. Using the
polyphase computational structure, however, it is possible to integrate the rate compression into the filtering
process so that calculations are performed at the final sample rate instead of the much higher input data rate.
The polyphase structure consists of separating the M coefficients ai of the original anti-aliasing filter into L
parallel sub-filters, each of length P � M � L. The P coefficients ck

i of the k-th sub-filter (where k runs from
0 to L � 1) are the subset of original coefficients ai for which i mod L � k—i.e., � c0 �

� � a0 � aL � a2L � � � � � ,
� c1 �

� � a1 � aL � 1 � a2L � 1 � � � � � , and so on. Conceptually, L consecutive input samples are distributed one at a
time to the individual sub-filters, each of which therefore operates at only 1 � L of the input rate (i.e., at the
output rate). The final output of the L-to-1 decimator is formed by adding together the L sub-filter outputs.
Use of the polyphase structure is particularly important for implementation in a programmable logic device
since it relaxes the timing requirements of the filtering circuit by a factor of L.

An alternative approach to achieving large decimation ratios is through the use of so-called interpolated
FIR filters (e.g., Dick 1998). Recall that an L-from-1 interpolator increases the sampling rate of an input
data stream by inserting L � 1 zeros between each of the original sample points, and then applying an
anti-imaging filter to remove the L � 1 images of the original spectral band created by the zero insertion;
hence it is the inverse of an L-to-1 decimator. An interpolated FIR (IFIR) filter operates similarly to an
L-from-1 interpolator except that the initial upsampling is applied to the filter coefficients instead of the
input data. The insertion of L � 1 zeros between successive coefficients of an FIR filter (of order M, say) has
two effects. First, the order of the filter is increased by a factor of L—and hence (as one would intuitively
expect) the original filter response is compressed toward zero frequency by a factor of L. In addition,
however, the interpolated filter response contains L � 1 equally-spaced images of this compressed response
(extending to the sampling frequency). Hence IFIR filters must be followed by a second, anti-imaging
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filter to remove these response images. The net result is a narrowband filter whose effective order is ML,
yet whose computational requirement is equivalent to an order M filter (not including the cost of the anti-
imaging filter, which can be comparable).

IFIR filters can be combined with the polyphase structure to produce effective large-ratio decimators. This
relies on use of the “Noble Identities” (e.g., Vaidyanathan 1993), which specify the result of commuting an
IFIR filter with a rate compressor (or expander). In particular, the result of IFIR filtering (whose interpolation
factor is L) followed by L-to-1 rate compression is equivalent to L-to-1 rate compression followed by FIR
filtering using the original, uninterpolated FIR filter from which the IFIR filter was derived. Note that in
IFIR decimation the anti-imaging filter (which does not participate in the Noble Identities) must be applied
before the IFIR filter; but since linear filters commute, the order of application is irrelevant and does not
change the output. This does imply, however, that the polyphase structure for the L-to-1 rate compression
gets applied to the anti-imaging filter; this is highly beneficial since it is this filter which is fed the original,
high sample rate input. Finally, note that if a total decimation ratio of M � L is required, where M � L is
an integer, then a second polyphase structure will apply to the final (now uninterpolated) FIR filter as well,
since only a factor L of rate compression can be commuted through the IFIR filter and integrated into the
initial anti-imaging filter.

At a conceptual and operational level, an IFIR decimator is very similar to a multirate, multistage deci-
mator in which all decimation stages except the last have been combined into a single stage—namely, the
polyphase structure for the anti-imaging filter. Using the Noble Identities, it is easy to see that the final (now
uninterpolated) FIR filter in an IFIR decimator will generally be identical to the last stage of the equivalent
multirate, multistage decimator. In practice, then, the choice of which to use involves comparing the trade-
offs in using a single, moderately complex anti-imaging decimation stage (in the IFIR decimator) instead of
several small, simple decimation stages (in the multirate decimator). For large decimation ratios, however
(or more precisely, when that portion of the rate compression incorporated into the anti-imaging polyphase
structure is large), the same reasoning used initially to justify a multistage approach can be used to conclude
that a single anti-imaging stage will be the more expensive choice. On the other hand, a programmable logic
implementation with numerous stages can produce an explosion in the bit widths between successive stages,
unless repeated truncation or rounding of intermediate signals is performed. For this reason it is difficult
to dismiss the IFIR approach a priori. One can even use a hybrid approach in which one or two extremely
simple stages are used to significantly “pre-decimate” the input signal, whose decimation is completed us-
ing an IFIR approach at the point where the individual stages of a multistage approach begin to increase
in complexity. In terms of CARMA spectral-line modes, though—and their relatively modest requirements
for stopband attenuation in particular—sufficient use of “pre-decimation” can be made that employing an
IFIR stage for the remainder offers no advantage. All decimators described in the following section are full
multistage designs.
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2.3. Frequency Modulation

Decimation can be implemented using low-pass, high-pass, or band-pass filters, depending on the location of
the desired passband within the Nyquist interval. A multistage design, however, is generally only practical
if low-pass filters can be used—at least for all stages before the last. This is due to the fact that the passband
at each stage must reside at a location where it will not alias onto itself during decimation. If there are three
2-to-1 decimation stages, for example, then the original passband must not overlap any of the frequencies
{1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8} (in units of the Nyquist frequency); and so on. For large decimation ratios,
therefore, the only sensible choice is to place the passband adjacent to either zero frequency or the Nyquist
frequency (in which case it will alias to zero frequency after the first decimation stage). As an added bonus,
low-pass 2-to-1 decimation filters (i.e., half-band filters) are twice as efficient as equivalent band-pass filters
since (by symmetry) half of their coefficients are zero.

To allow decimators employing only low-pass filters to be used with passbands centered somewhere inside
the original Nyquist interval, digital frequency modulation must be used. In this technique, the original
(real) input signal is modulated by a complex exponential to produce a complex signal whose passband can
be centered at any desired frequency. Assuming that the forward Fourier transform (from time t to frequency
f ) is defined using a positive exponent:

H � f � �
� ∞

� ∞
h � t � e2πi f t dt �

zero frequency can be shifted to frequency f0 by multiplying the input samples {xk} by e � iπ f0k, where f0

is in units of the Nyquist frequency. The result is particularly simple for f0 ��� 1 � 2, in which case the
frequency modulated samples are � x0 ��� ix1 � � x2 � � ix3 � x4 � � � � � ; in particular, no trigonometric calculations
are required, and the bit width of quantized samples is not increased by the modulation process—both
important considerations for FPGA implementations. (There is one exception to this for n-bit signed integer
samples: negating the minimum representable value, � 2n overflows the maximum representable value, 2n �
1, which increases the bit width by one.) However, as the input samples are now complex instead of real, the
amount of data to be filtered is doubled. But there is another significant advantage to frequency modulation:
it allows the passband to be centered on zero frequency, effectively halving the sampling frequency and
absolute transition width of the final, expensive half-band filter compared to a passband with one edge
aligned with DC. This fully compensates for the need to filter two sample streams (real and imaginary parts)
instead of one. For CARMA, an analog filter centered at 750 MHz will alias to 250 MHz (half Nyquist)
and support the use of frequency modulation. As explained in the next section, a design based on digital
frequency modulation is the most practical solution for the CARMA first-light system.
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3. Decimators for CARMA Spectral Modes

3.1. Design Considerations

All of the CARMA spectral line modes are based on analog filtering (which takes place inside the spectral
downconverters) followed by decimation (in digitizer FPGAs) of the quantized input samples from the
original 1 GHz sampling frequency down to the Nyquist-limited sampling rate of the corresponding spectral
mode. How the decimation is performed varies according to the bandwidth of the mode. As a limiting
case, the 500 MHz “wideband” mode can (and should) be regarded as the spectral mode with the widest
bandwidth, for which no decimation is needed. For the 250 MHz and 125 MHz modes, decimation is limited
to simple rate compression; that is, L-to-1 decimation (where L � 2 for 250 MHz and L � 4 for 125 MHz)
is implemented by keeping only every L-th input sample and discarding the rest. Thus for these modes,
passband fidelity is entirely determined by the analog filter’s response. In principle this approach can be
extended to the narrower spectral modes as well; however, there are several practical difficulties. One is cost:
each additional mode implies an extra filter in each spectral downconverter (120 being required for the 15-
station, 8-band first-light correlator). More seriously, the downconverter design must accommodate the extra
filters, increasing both board size and overall complexity. Adding or modifying bands after manufacture also
becomes difficult or impossible.

Implementing spectral modes using digital filtering techniques avoids all of these concerns, but naturally
has limitations of its own. The most important of these is the data throughput required of the digital filter—
the wider the spectral bandwidth, the more demanding the filter will be in terms of clock frequency and/or
logic requirements. To determine the digital filtering capabilities of the Altera FLEX 10K100E FPGAs
used in the COBRA digitizers, Altera’s FIR Filter Compiler was used to generate a number of digital filter
components. Tolerances suitable for implementing CARMA spectral modes were chosen: maximum peak-
to-peak passband ripple of 1 dB, minimum stopband rejection of 25 dB, and transition width from passband
to stopband of 1/64 the passband width. (All first-light spectral modes contain � 64 frequency channels,
hence filter transition widths of at most 1/64 the passband are desirable to limit out-of-band aliasing to the
outermost channels only. Note however that subsequent Hann windowing will draw some of this noise into
adjacent bins.) The prototype filters were then individually synthesized (placed and routed) to determine
their maximum operating frequency (fmax) and total logic usage. Reported fmax values were in the range
of 100-130 MHz, and the filters consumed � 50% of the logic elements in a FLEX 10K100E.

In multistage decimation the final stage is normally the most demanding—it is the one responsible for
creating the final, sharp passband edges. The simulated filters described above are the ones required for
this stage. The frequency at which the final filter must operate depends not only on the final bandwidth, but
also on how the filter is implemented in digital logic (parallel or serial) and the number of input streams
that must be processed (one if the input is real, two if it is complex). A serial implementation processes
one input bit per clock cycle, and hence requires n cycles to produce a single output when fed n-bit input
samples; the consecutive application of 1-bit processing minimizes the filter’s logic usage, at the expense
of overall throughput. A fully parallel implementation, by contrast, is able to produce one filtered output
per clock cycle, at the expense of increased logic usage. The 50% logic usage quoted above is for a fully



– 9 –

parallel, two channel (4-bit input each), half-band filter of order 127 (65 non-zero coefficients, quantized
to 9 bits), suitable for use in a decimator based on frequency modulation. In this design, the filter operates
at the output frequency (twice the spectral bandwidth). Equivalent designs based on band-pass filtering
of an unmodulated signal have similar logic requirements (the equivalent decimator uses a fully serial,
single channel, 4-bit input band-pass filter with 256 coefficients). In the band-pass design the filter operates
at quadruple the output frequency (8 times the final bandwidth), and hence is inferior to the frequency
modulation approach in that regard.

Another consideration for digitally-created spectral modes is efficiency loss, defined in terms of the expected
cross-correlation signal-to-noise ratio (SNR). Since the digitally filtered output needs to be requantized into
2-bit samples for transmission to the correlator cards, the final cross-correlation SNR is necessarily less
than the nominal value of 0.872 that results from the initial 2-bit (1 GHz) digitizer sampling followed by a
deleted-inner-products correlation scheme (e.g., Hagen & Farley 1973), assuming weakly correlated input
(ρ � 1). Since the analog signal is always digitized at 1 GHz, however, the input to the narrowband modes
is highly oversampled, and hence most of the quantization noise produced by the initial 2-bit sampling can
be removed during decimation. In this way the final SNR can remain relatively close to 0.87 instead of
0 � 872

� 0 � 76 as expected otherwise, although some additional loss in SNR is unavoidable. The decrement
depends on the decimation ratio and the details of the filters used in the decimator (both coefficients and bits
of precision); for the proposed CARMA design (see § 3.2) it is a few percent.

Applying these considerations to CARMA leads to the following conclusions. First, it is easier to minimize
the loss in cross-correlation SNR if the narrowest available analog filter is used to “pre-filter” the input
signal; in this case most of the original Nyquist interval will contain only small amounts of quantization
noise, easing requirements on the early decimation stages. Second, the relatively broad transition width of
this analog filter—estimated at 1/16 its passband width—implies that it is not feasible to use a decimator
based solely on low-pass filters unless frequency modulation is also employed. Simply put, the region near
digital DC is too corrupted by aliasing from the wings of the analog filter to be included in the passband of
any high resolution spectral modes. Hence the practical choices for CARMA are (i) center the narrowest
analog filter at 750 MHz (the middle of the downconverter window) and use digital frequency modulation
to recenter the passband at zero frequency for further processing, or (ii) align one edge of said analog filter
at either 500 MHz or 1 GHz, and use a band-pass filter in the final decimation stage to avoid zero frequency
when carving out the final passband. The 2 MHz and 8 MHz modes can be implemented using either option.
The 31 MHz mode can be implemented only with option (i), since in option (ii) the band-pass filter would
need to operate at 256 MHz—well beyond the capabilities of a FLEX 10KE device; using a parallel filter
would avoid this issue, but would not fit in the 10K100E FPGAs used by the digitizers. Hence frequency
modulation is the better alternative.

In neither option can spectral modes with bandwidths larger than 31 MHz use digital filtering to create sharp
passband edges. Four analog filters are therefore required: 500 MHz, 250 MHz, 125 MHz, and 62 MHz.
The three widest analog filters produce their final passbands directly, and involve no digital processing
other than simple rate compression; their nominal edges can be aligned to either 500 MHz or 1 GHz in
the downconverter window. To meaningfully support the frequency modulation option, the 62 MHz filter
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must be centered at 750 MHz. This demands that frequency modulation also be applied in the creation of
the 62 MHz observing mode, since otherwise the passband would alias onto itself when subsampled. This
in turn means that the signal must be low-pass filtered, and requantized to 2-bits (with some loss in SNR).
Since only simple digital filters can be used here (due to the large throughput required), the passband edges
for the 62 MHz mode will be no sharper than that of the analog filter. The 31 MHz, 8 MHz, and 2 MHz
modes are each formed from the center of the 62 MHz analog passband after modulation to zero frequency
and application of a multistage decimator, as described previously. Detailed filter specifications are given in
the follow section.

3.2. Proposed CARMA Design

Based on the preceding considerations, I recommend that the 62 MHz, 31 MHz, 8 MHz, and 2 MHz spectral-
line modes be implemented using the following processing pipeline:

1. Encode Re-encode the 2-bit sign/magnitude input samples as two’s-complement signed integers for fur-
ther processing. Note that the proper numerical values (weights) for a 2-bit quantization scheme are
{-3, -1, +1, +3}, which nominally requires three bits to represent. This can be reduced back to two bits
using the linear transformation xk � � xk � 1 � � 2 on the samples {xk}, which maps the original values
to {-2, -1, 0, 1}. This transformation amounts to adding a large DC component to the input spec-
trum, which does not affect the passband (still centered on 250 MHz at this stage) and is completely
removed by subsequent processing.

2. Modulate Center the positive frequency analog passband on zero frequency by multiplying the encoded
samples {xk} by eπik � 2 , producing a complex sequence {zk}={x0 � ix1 � � x2 � � ix3 � � � � }. The negative
frequency passband becomes centered on the Nyquist frequency. Note that half of the samples (real
or imaginary parts thereof) are zero after modulation.

3. Decimate Apply one or more FIR filter/decimation stages to reduce the input sampling rate to the
Nyquist-limited rate of the corresponding spectral mode. Five distinct filters are used in all; their
coefficients and the increase in bit width they produce (output vs. input) are listed in Table 1. The
complete filtering sequence for each band is:

62 MHz: F1 � 8 � ;
31 MHz: F1 � 8 � , F4, HB;

8 MHz: F1 � 16 � , F4, F4, HB;
2 MHz: F1 � 16 � , F2, F2, F4, F4, HB.

The filters F1 � 8 � and F1 � 16 � are, respectively, 8-to-1 and 16-to-1 comb-like decimators whose coeffi-
cients have been optimized to strongly suppress the negative frequency passband ( � 50 dB rejection);
they also exactly null the spectral component (originally at DC) added during encoding. The F2 and
F4 filters are simple 2-to-1 half-band decimators (cf. Crochiere and Rabiner, § 5.5.2). Filter HB is



– 11 –

the primary half-band filter, responsible for creating the final, sharp edge for the 31 MHz, 8 MHz, and
2 MHz modes. Its coefficients are based on the windowing method, scaled and truncated to eight bit
integers (the maximum, central coefficient requires nine bits); the window function was non-standard
and hand-tweaked to place the response ripples at favorable locations relative to the estimated channel
boundaries. Note that there is no decimation associated with filter HB.

4. Demodulate Center the passband at half the Nyquist frequency by multiplying the decimated samples
{zk} by e � πik � 2 . The passband now fills the entire positive frequency range, from zero to Nyquist.
Negative frequencies contain no signal after this stage, only residual noise left over from the previous
step. Note that the real part of the demodulated sample sequence consists of even-k real parts inter-
leaved with odd-k imaginary parts from the original sequence {zk} (with appropriate sign inversions).

5. Reconstruct Recover the output sequence {xk} from the demodulated sequence {zk} by taking the real
part, xk � � zk

�
z̄k � � 2. In the frequency domain this is equivalent to adding the spectrum to its reflection

about zero frequency—hence the residual noise mentioned in the previous step is unavoidably added
to the desired output signal during reconstruction.

6. Requantize Filtering increases the bit widths of the samples (cf. Table 1). This final processing stage
requantizes the reconstructed samples back to two bits.

Note that more than one stage may be integrated into a single component in the VHDL implementation.
In particular, creation of the 31 MHz mode requires that only those samples actually needed during recon-
struction be calculated by filter HB (otherwise, either operating frequency or logic usage must be doubled,
neither of which is feasible for the 31 MHz mode). This amounts to computing only the even-numbered
filter outputs for the real part of the sample stream, and only the odd-numbered filter outputs for the imagi-
nary part of the stream. This can be accomplished using the polyphase representation of HB, in which the
even- and odd-indexed coefficients are separated into sub-filters P0, and P1, respectively. The (purely) even-
numbered outputs {y0 � y2 � y4 � � � � } of an input sequence {x0 � x1 � x2 � � � � } can then be computed by filtering the
sub-sequence {x0 � x2 � x4 � � � � } through P0, the sub-sequence {0 � x1 � x3 � � � � } through P1, and then adding the two
sub-filter outputs together. Similarly, the (purely) odd-numbered outputs are computed by filtering the sub-
sequences {x1 � x3 � x5 � � � � } and {x0 � x2 � x4 � � � � } with P0 and P1, respectively, and then adding the results. Hence
in this case the P0 filter will process two input sub-streams and (assuming a fully parallel implementation)
operate at the final sampling frequency—62 MHz for the 31 MHz band, which easily satisfies timing limits.
For a half-band filter (such as HB), the sub-filter P1 is trivial as it contains only one non-zero coefficient.

Net frequency response for the 62 MHz and 8 MHz modes are shown in Figures 1 and 2, respectively;
response for the 31 MHz and 2 MHz modes is nearly identical to that for the 8 MHz band, all three being
dominated by the response of filter HB. The 62 MHz mode exhibits 0.6 dB of fall-off at the band edges due
to digital processing (by comparison, the analog filter response is estimated to be -10 dB at this point). The
channel-averaged passband response for the remaining modes is quite flat, with � 0 � 3 dB peak-to-peak rip-
ple due to digital processing. In addition, out-of-band rejection is � 30 dB, except in the outermost channels.
The large outer-channel aliasing is an inherent limitation (‘feature’) of half-band filters, whose response at
half Nyquist is fixed by symmetry at -6 dB, independent of the number of coefficients used. The zero and



– 12 –

Fig. 1.— Net frequency response and stopband rejection of the proposed 62 MHz observing mode. The
response shown is for the digital filtering component only; the analog filter produces an additional roll-off
in response across the band, and is also solely responsible for creating the passband edges for this mode.
Note that the passband is centered on zero frequency and that filter response is symmetric about this point.
Estimated channel boundaries for the outermost channels are indicated by vertical lines.
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Fig. 2.— Net frequency response and stopband rejection of the proposed 8 MHz observing mode. The
response shown is for the digital filtering component only; the analog filter produces an additional, small
roll-off in response across the band ( � 0 � 5 dB). Note that the passband is centered on zero frequency and
that filter response is symmetric about this point. Estimated channel boundaries for the outermost channels
are indicated by vertical lines. Responses for the 31 MHz and 2 MHz modes are similar (all are dominated
by the final half-band filter).
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Nyquist frequency channels are therefore usable only for determining continuum baselines, assuming there
are no lines in the adjacent out-of-band channel.

Note that filtering severely alters the sample statistics; the samples being requantized do not follow a Gaus-
sian distribution, and hence the optimum “threshold voltage” v0 (the positive input level separating the high
and low quantization states, in units of the standard deviation of the input) need not coincide with that ap-
propriate for the first quantization; it may also change between spectral modes. Cross-correlation statistics,
which determine the final SNR, are also significantly affected. Detailed, bit-accurate simulations of the
above processing pipeline were performed to accurately determine the cross-correlation statistics and SNR
variations (as a function of v0) for each of the spectral modes. Efficiency also depends on the number of
bits retained between decimation stages. To gauge SNR dependence on the latter, simulations maintaining
6, 7, or 8 bits of precision between stages were performed (input to filter HB was limited to 4, 5, or 6 bits,
respectively, as it will dominate the FPGA logic usage). For comparison, full precision simulations—quite
impractical in terms of logic usage!—were also done.

Sample input was created by drawing pairs of samples from a bivariate Gaussian (correlation factor ρ � 0 � 1),
band-limiting the two input streams to model the analog pre-filter, and then quantizing them to two bits. The
initial quantization used a threshold voltage v0 � 1 � 00, the optimum value for full 2-bit cross-correlation
(spot testing with v0 � 0 � 90 showed little change in the final SNR). The samples were then processed as
described above. After each stage, power spectra, population histograms, and cross-correlation statistics
were calculated, for a series of values of v0 between 0 and 2. The SNR results are summarized in Table 2.
The final SNR is seen to depend sensitively on the number of bits retained between filtering stages, especially
at the highest decimation ratios, which contain the most filtering stages. Although the actual SNR for each
mode cannot be determined until the full VHDL implementation is complete, a 6-bit implementation should
be regarded as the worst-case. Thus efficiency losses are predicted to be 3-6%, or less.

4. Discussion

The preceding analysis assumes as-is reuse of COBRA hardware. In that case, decimators based on digital
frequency modulation appear to be the most advantageous, although they are somewhat more complicated to
implement than decimators employing band-pass filters. The latter approach could be viable for the 31 MHz
mode if two of the digitizer FPGAs were replaced with larger (10K200E) devices, but as the frequency
modulation option can also support modes narrower than 2 MHz with relative ease, the added algorithmic
complexity provides flexibility as well as cost-effectiveness. In fact, the use of 10K200E devices would
allow the 62 MHz band to be created digitally as well, as long as frequency modulation is employed.

The filters listed in Table 1 are not cast in stone, and changes would add negligibly to implementation costs;
improved performance may be possible after further experimentation. In particular, a more intelligent (yet
practical) approach to maximizing SNR would be to minimize truncation during the early, simple stages,
and to round results only as needed in the final one or two stages. Such issues are best investigated after the
initial VHDL implementation is available, when total logic usage can be accurately determined.
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Table 1. FIR Filter Coefficients

Filter Expansiona Coefficients

F1 � 8 � 4 {1, 2, 2, 3, 3, 2, 2, 1}
F1 � 16 � 5 {1, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 1}

F2 2 {1, 2, 1}
F4 6 {-3, 0, 19, 32, 19, 0, -3}
HB 9 { -1, 0, 1, 0, -1, 0, 1, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -3, 0, 3, 0,

-3, 0, 3, 0, -3, 0, 4, 0, -4, 0, 4, 0, -5, 0, 5, 0, -6, 0, 7, 0, -8, 0, 9, 0,
-11, 0, 13, 0, -17, 0, 24, 0, -40, 0, 122, 192, 122, 0, -40, 0, 24, . . . }

aThe maximum number of additional bits needed to represent the filtered samples, relative
to the input bit width.

Table 2. Estimated CARMA FIR Spectral Mode Efficiency

6-bita 7-bita 8-bita fulla

Bandwidth αb SNRc αb SNRc αb SNRc αb SNRc

62 MHz ����� ����� ����� ����� ����� ����� 3.022 0.876
31 MHz 3.596 0.843 3.499 0.846 3.450 0.849 3.409 0.849
8 MHz 3.236 0.815 3.036 0.830 3.153 0.834 3.263 0.837
2 MHz 3.181 0.807 3.010 0.830 3.122 0.834 3.238 0.835

a The number of bits maintained between filtering stages (for the input to HB only, sub-
tract two bits); ‘full’ means no truncation.

b The cross-correlation normalization factor, α � ρ ;v0 � �
�
XY � � ρ , where ρ is the true

correlation between X and Y , and v0 is the threshold voltage. Values are for ρ � 0 � 1 and
v0 � 0 � 90.

c Maximum cross-correlation signal-to-noise ratio relative to a single, infinite-precision
quantization. A deleted-inner-product scheme is assumed. For comparison, the maximum
SNR for a single 2-bit quantization is 0.878 (ρ � 0 � 1). Maximum SNR was achieved at
v0 � 1 � 00 for the 62 MHz band and at v0 � 0 � 90 for all remaining bands.



– 16 –

REFERENCES

Beasley, A.J., Hawkins, D.W., Rauch, K.P., and Woody, D.P., 2003, CARMA Memo 11.

Beasley, A.J., Woody, D.P., and Hawkins, D.W., 2002, CARMA Memo 3.

Crochiere, R., and Rabiner, L. 1983, Multirate Digital Signal Processing (Englewood Cliffs: Prentice-Hall),
Chapter 5.

Dick, C. 1998, “Implementing Area Optimized Narrow-Band FIR Filters Using Xilinx FPGAs,” white paper
available from www.xilinx.com.

Hagen, J.B., and Farley, D.T. 1973, “Digital-correlation techniques in radio science,” Radio Science, 8, 775.

Rauch, K.P., 2003, CARMA Memo 9.

Vaidyanathan, P.P. 1993, Multirate Systems and Filter Banks (Englewood Cliffs: Prentice-Hall).


