
CARMA Memorandum Series #47

Revised CARMA Correlator Software Modules

Kevin P. Rauch (UMD), Tom Costa and Dave Hawkins (Caltech)

August 15, 2008

ABSTRACT

This document discusses the correlator software components that will differ between the
revised and COBRA boards.



– 2 –

Change Record
Revision Date Author Sections/Pages Affected

Remarks
0.1 2007-August-22 KPR

First draft.

0.2 2007-August-27 KPR

Added updates from DWH.

0.3 2007-November-12 DWH

Added an overview of the COBRA software design. Asked Tom to add comments on the areas he
worked on.

0.4 2007-November-21 KPR

Added updates from TC.

0.5 2008-March-25 KPR

Updated division of data processing tasks occurring on fastand slow timescales.

0.6 2008-August-15 KPR

Assigned official CARMA memo number.



– 3 –

1. Overview

The correlator software chain can be divided into the following major components:

1. FPGA VHDL code: The software from which the FPGA download configurations areproduced;
fully determines data FPGA processing capabilities and system controller functionality.

2. Board PPC code:The software managing communication between the band x86 host and a particular
digitizer or correlator board.

3. Band x86 code:The software implementing the interface between a single band and the high-level
CARMA software which interacts with it.

This document is concerned with the plan and implementationstatus of the latter two categories. As both
the on-board PPC CPUs and the crate x86 host will run Linux, there is significant overlap between the two
codebases. Each is discussed separately below, with commonelements noted. Use of the PPC running
Linux allows several tasks formerly relegated to the x86 host to be transferred to the on-board CPU.

2. Embedded PPC Code

The PPC code can be grouped into three basic functions: control, data processing, and monitoring. Direct
interaction between the three components is very limited; however, to permit convenient data exchange
between them where it does exist, the base implementation plan is for each function to have a dedicated
thread within a single board server process. The three main threads may delegate work to additional threads
as appropriate.

2.1. Control Functionality

• Set Bandwidth Mode
This procedure switches the correlator from one bandwidth mode to another, which entails the fol-
lowing steps:

– Modify the ‘change bandwidth’ monitor system flag.
This informs the system that a bandwidth change is in progress.

– Instruct delay processing thread to suspend operation.
This informs the thread to stop communicating with the FPGAs.

– Instruct the data processing thread to suspend operation.
This informs the thread to stop processing data. It still needs to send data to the x86 host every
500 ms; however, it marks that data as empty. The monitor system contains the reason for the
empty data.



– 4 –

– Cancel all pending DMA transactions to or from the FPGAs.

– Download new FPGA configurations to the data FPGAs.
Once all PPC related communications to the FPGAs has ceased,the FPGAs are reconfigured.
If possible all FPGA configurations will be loaded into localRAM after the PPC boots, to
minimize delay when switching modes. Memory requirements for this are TBD, and depend
on the number of sample requantization options offered to observers. (The VHDL codebase
supports 2-, 3-, or 4-bit cross-correlations, but each generates a unique download configuration.)
Configurations can be retrieved from an NFS-mounted filesystem if RAM usage is excessive.
Implementation of this step requires rework of the current code (how much??)

– Verify proper download of the new FPGA configurations.
After downloading, FPGA configuration checks are run; the most basic being a check that the
configuration version numbers and FPGA compatibility flags are correct (to check that the cor-
rect FPGA configuration has been loaded to a specific FPGA). Once the checks pass, the inter-
FPGA data buses can be enabled, and correlation processing can restart.

– Reset/enable the data FPGAs.

– Reload appropriate delay and phase corrections.
The control thread performing delay processing is reactivated.

– Reactivate the data processing thread.

– Modify the ‘change bandwidth’ monitor system flag.
The flag value is changed to indicate that a bandwidth change has completed.

The sequence must ensure that any processed data has delays correctly applied. Data should be marked
as bad if it arrives prior to the timestamp of the new delay corrections; e.g., when the delay correction
thread is restarted, and sends delay information to the FPGAs, it is only after the next complete 500ms
frame that the data can be considered to be the first valid data. Any incomplete frame data must be
discarded, otherwise it will cause apparent phase and amplitude glitches in the data.

The clock/data alignment required for COBRA boards after a bandwidth change will no longer be
necessary; it will be guaranteed through the use of a synchronous 1 pps tick routed individually to
each FPGA.

• Delay and Phase Corrections
These corrections include antenna-based whole (ns) and fractional (sub-ns) sample delays, and phase
offset corrections. Implementation of this functionalityis radically different compared to COBRA
boards, as all corrections are now applied continuously in the digitizer data FPGAs. The supporting
(digitizer) PPC code must perform these tasks every 500 ms:

– Generate delay and phase correction tables for the next 500 ms.

– Generate sub-ns filter coefficient sets for each delay.

– Encode the filter data and ns delays into FPGA-required format.



– 5 –

– Download the encoded data to the corresponding digitizer FPGAs.
Two data FPGAs (one per antenna) receive a small table of phase offsets, one offset for each
15.625 ms integration; the other two FPGAs receive larger tables combining ns delay and sub-
ns delay filter information, again one for each integration.Transfer to FGPA RAM involves
scheduling DMA transfers of pre-defined memory buffers to memory-mapped locations.

The delay and phase corrections are tightly coupled, and hence must always be updated together.
Activities affecting delay and/or phase include bandwidthchanges, observing frequency (second LO)
changes, Doppler tracking, and noise source control. Delayvalues are interpolated from a triplet of
values received from the host; these are updated every 20 s.

• Set Noise Source
This procedure turns the noise source on/off. At the board level it merely instructs the CPU to ig-
nore/enable the astronomical delay corrections. This in turn requires a call to the delay and phase
correction update routine.

Phase flattening on the noise source can be implemented in twoways:

– aligning digitizer clocks to remove the slope

– using a reference noise source integration

In the latter scheme, a noise source integration is used to determine a slope, and all subsequent noise
integrations have the opposite slope and offset applied. The COBRA scheme uses the clocks to remove
the phase slope, however, there remains a band-to-band offset. The offset is static so can be removed
after-the-fact. The digitizer FPGA delay/offset registers do not need to be used. Regardless of which
scheme is used, there is a sequencing protocol.

When turning the noise source on:

– Noise source on command is received.
This is asynchronous. When the noise on command is received,it has to be assumed that any
integration data in the last frame could be corrupted, i.e.,contain some fraction of the radio
source and some fraction on the noise source, so the 500ms data packet received from the FPGAs
in the same 500ms as the command was received is discarded, and the 500ms frame sent to the
x86 is marked as empty.

– Set FPGA delay/offset values to zero for the next 500 ms.

– Send 500ms noise integrations to the host CPU.

When turning the noise source off, the above sequence is repeated, this time setting things up for
the radio source. Any data that has potentially mixed radio source and noise source data needs to be
discarded. The correlator can only make a discard decision based on the time it receives a noise on/off
command. The data could still be corrupted, eg. if the downconverter receives the command in the
next 0.5s frame after the correlator, the data will still be bad. It is up to the high-level control system
to filter data at that level.



– 6 –

• Set Walsh Table
This procedure provides a way to reset the current Walsh sequence and/or reload a new table. This
is implemented in COBRA; however, the host implementation is not exposed to the CARMA control
system as an API call. TheCorrelatorBandServer in the current system uses the set Walsh
command to send the Walsh sequences to the DSPs. Without thatinformation the DSPs can not
demodulate the data. There are two Walsh sequences:

– The 180-degree sequence sent to the digitizer FPGAs.
This sequence removes DC offsets on a 1/1024 ms timescale.

– The 90-degree sequence sent to the correlator FPGAs.
This sequence supports sideband separation (16/1024 ms timescale).

The API could be modified to reflect the two separate Walsh tables. The COBRA system uses the
antenna-based Walsh table to create baseline-based Walsh tables to send to the baseline processing
code.

• Set Digitizer Thresholds
This procedure sets the digitizer quantization thresholdsto maximize cross-correlation signal-to-
noise. The algorithm we will use has not been worked out. There is limited analog gain control
on the ADCs, and the FPGAs will most likely be responsible forrenormalizing the input samples so
that the input distribution is zero-centered and optimallyscaled. However, the available analog con-
trols should be fully utilized to avoid losing significant bits to digital rescaling. The digitizer FPGAs
produce quantization state histograms each integration that can be used by the PPC to compute the
required renormalization constants, which can be written back to the FPGAs. In practice this will be
done only on initial start-up of the correlator.

• Digitizer Clock Control
The phase flattening algorithm (controlled by the x86 host) requires a way to slew the digitizer clocks
to remove static delay offsets between antennas. This procedure provides the requisite control hook.
Implementation is unique to the new hardware.

2.2. Signal Processing

Raw correlation data from the FPGAs will be transferred to DDR RAM via DMA; hence the PPC data
processing code will read the data from local memory. Processing occurs on two timescales, the ‘fast’
15.625 ms integration time and the ‘slow’ 500 ms accumulation time. Correlation data flows through these
steps on the fast timescale:

• DMA transfer of FPGA lag RAM to local (kernel driver) DDR RAM.

• Copy driver data to user space and collate into a Band object.



– 7 –

• Accumulate data into proper phase bin (in-phase or quadrature).

The DMA transfer operates as a low-level kernel task, independent of the data processing. The remaining
tasks are similar to current COBRA processing, except that lags are accumulated instead of spectra.

This processing occurs on the slow timescale:

• Conversion of integer data to floating-point format.

• Renormalize data to remove bias and scale.

• FFT the data to obtain spectra.

• Sideband separate the spectra.

• Package spectra into a form suitable for consumption by x86 host.

• Transfer the encoded data to the host.

Renormalization depends on the multiplication scheme, which varies with the bit-width of the (2-, 3-, or 4-
bit) cross-correlation samples. The FFTW package, which can be configured to produce optimal transforms
for vectors of a specific length, will be used to Fourier transform the data. The number of lags produced
by the FPGA configurations has also been tuned to permit the use of a fast transform, without the need for
zero-padding. Aside from the increased resolution, this process is no different than for COBRA.

The code to package and transfer data can be largely (completely?) reused from COBRA, and shared
between the PPC code and x86 code. In the current scheme, transfer of data places it into the ACE domain;
prior processing can be performed sans the ACE framework.

2.3. Monitoring

The monitoring thread is tasked with gathering monitor point information from the various on-board devices,
and transferring collected data to the x86 host every 500 ms.The following modifications to the existing
COBRA code are needed:

• Implement data collection from new low-level hardware devices.

• Separate monitor points into common and hardware-specific ones.

• Modify raw data structures to accommodate new monitor points.

• Support conversion of new data structures to monitor packetformat.

Note that these changes propagate even into high-level CARMA code; addition to and reorganization of
existing MPML is needed, as well as updates to the x86 host code which aggregates monitor data from all
boards in a band.



– 8 –

3. Host x86 Code

The major changes compared to COBRA are:

• Flatten Phase Routine
The current procedure suffers from an inability to write into the monitor stream (to update flattening
status and set control sequence number). The COBRA flattening algorithm also needs to be reworked
to support the revised hardware (what control API is needed from the PPC?)

• Support new monitor point organization.

• What else??

4. FPGA Data Format

In 2006 we created a document that contained the data format requirements for the data from the FPGAs.
The description of the data should be added to this document.The objective of the Linux data processing is
as follows:

• Hardware is responsible for meeting real-time deadlines.
The PowerPC DMA controller will be configured by the control process to transfer the 15.625ms data
into a bounded kernel buffer (a linked list of buffers, probably no more than a second long).

The configuration of the driver is TBD. Basically the driver needs to know how many lags to read,
and from where. Its possible that this information can be encoded in an FPGA register that is changed
when the FPGAs are reconfigured. But a driver call is also an option. Driver calls to cancel pending
DMA transactions prior to an FPGA reconfiguration are required anyway.

Bottom line:the driver will ensure that 15.625ms data packets are transferred to DDR memory before
the next 15.625ms integration is ready.

• Linux is responsible for maintaining data throughput.
In other words, it needs to process 500 ms of data every 500 ms,but is subject to no other scheduling
deadlines. If during processing it misses a 15.625ms deadline, the extra data will be buffered in the
driver. However, this potential for missing a deadline means that the Linux process can not just ’read
the time’ to determine which phase bin in which to accumulatethe data; the data packet needs to
contain an indication of time (e.g., a sequence counter), orphase-switch state, so that the data packet
is self-contained. A timestamp is probably the most useful indicator, as the Linux process can use
it to determine whether the process has missed a critical deadline (e.g. a 500ms boundary), and that
the data has to be discarded. This timestamp would need to exist in the data for each FPGA, or be
read from a system controller register and pre-pended to thedata packet as part of the DMA to DDR
memory.



– 9 –

CARMA Control SystemSZA Control System

BandsServer

BandServer

CORBA Translator

BandServer

BoardBoard

Sockets

Sockets

CORBA

Sockets

PCI PCI

(a) (a)

Fig. 1.— COBRA software hierarchy for (a) SZA and (b) CARMA.

These issues were discussed when we were developing the dataprocessing packet format, and the packet
should already contain this information.

5. COBRA review

5.1. Software hierarchy

This section contains comments on the COBRA control system design, comments on areas Tom was work-
ing, and comments on areas that require work for the COBRA hardware, and the new CARMA hardware.

Figure 1 shows the software hierarchy for the SZA and CARMA. Both control systems use a common
code-base. Figure 1(a) shows how the SZA control system receives correlation results;

• The SZA control system uses a bands client class to connect tothe bands server running onszanet

• The bands server application contains a server class, and multiple band client classes. The server
receives data over each of the band client connections, combines the data into a bands data object, and
serves that to bands clients. The SZA control system is typically the only bands client. A bands client



– 10 –

file writer class and application exists that can be used to write bands data into a file for analysis in
MATLAB. There are 16 bands in the SZA system.

• The band server application contains a server class, and multiple board classes. The server receives
data from the board devices, combines the data into a band object, and serves that the band clients.
There are 6 boards in an SZA band.

Figure 1(b) shows how the CARMA control system receives correlation results;

• The CARMA control system communicates to each band directlyusing the CORBA protocol.

• Each CPU that runs a band server also runs a CORBA translator application. The translator application
implements the CORBA correlator interface using the sockets-based interface provided by the band
client interface.

• The band server application contains a server class, and multiple board classes. The server receives
data from the board devices, combines the data into a band object, and serves that the band clients.
There are 19 boards in a CARMA band.

5.2. Hardware initialization

The correlator hardware needs to be initialized after power-up. Initialization consists of;

• Loading the OS

• Start the board application

• Reference signals checks; 1pps, phase-switch reference, external clock

• Clock setup (phase-lock to external clock)

• Setting digitizer thresholds

• Clock alignment

The hardware can check the references and lock its on-board clocks without any communication to the
control system. However, it can not set RF levels or flatten clock phase until the control system has informed
the boards that the power-levels are correct (for setting thresholds), and that the noise source is on (for
aligning clocks). Hence, the board application should onlyperform basic initial checks, start generating
monitor data, and wait for control system commands before progressing further.

The current COBRA code does not operate in this manner. The hardware still requires manual setup. Oper-
ations such as booting the DSPs, and setting the time, take longer than the timeout required by the CARMA



– 11 –

control system, so these operations are performed manuallyso that when the IMR starts the application,
these steps are skipped as the DSPs are alive and the time is set.

The COBRA board setup code requires work to get it to operate reliably, and then work to add the function-
ality as control system commands.

The implementation of the setup code consists of some board functionality, and some band functionality.
For example, the phase-flattening routine requires information from a band (the phases on all baselines),
so it needs to be part of the band server. The commands to move clocks are then issued to a board, i.e.,
the boards are not really aware they are aligning clocks, they just respond to commands to adjust the clock
phase.

5.2.1. Low-level setup programs and usage

• /usr/local/carmaTools/cobra/CorrelatorReset

– Will reset boards.

– Takes a-v for verbose output.

– -all will reset all boards that can be found.

– -slot <s> will reset slot s.

• /usr/local/carmaTools/cobra/digCorlWideband

– Will attempt to set up boards using low level direct manipulation.

– Tries to set up the thresholds.

– Takes a-v for verbose output.

– -all will set up all boards that can be found.

– -all-digwill set up all digitizer boards that can be found.

– -slot <s> will set up slot s.

– For correlator boards it back tracks using the config file infoto manipulate the digitizer boards
that feed that correlator in addition to manipulating the correlator board.

• Usage order if everything works
Note that many of the command lines below appear short because I have taught several of these
program to recognize the host name for the machine they are running on and default many of the
usual CORBA program arguments if they are not explicitly given on the command line. The set of
hosts that are "known" includes ovrolab2, slcor1, slcor2, slcor3.

– Make sure the noise is on and psysPreset is okay.

– Make sure theCorrelatorBandServerandCorrelatorBandTimeCheckerprocesses
areNOT running.



– 12 –

– If needed, reset all the boards:
/usr/local/carmaTools/cobra/CorrelatorReset -v --all

– Try to get the thresholds and other low level bits set up:
/usr/local/carmaTools/cobra/digCorlWideband -v --all

– Get the DSPs running, FPGAs programmed, and DSP time set up:
/usr/local/carmaTools/cobra/CorrelatorBandServer -v

– Wait for the preceding to get to the steady state where it is publishing data every half second.

– Control-C this app and start it up again in non-verbose mode.This step is not required but it
makes watching its messages easier.

– Start up theCorrelatorBandServer process (butnot the time checker).

– Double check that noise is on and the power level is okay.

– Start up RTD to watch various MPs.

– Start up CDV to watch the 0.5 second data coming off the crate.

– If on the RTS and needed then use~dwh/bin/host_comms to match up the coarse/fine
delays for the 2 inputs on the last digitizer card (the unconnected DigB input settings must
match those of DigA).

– Run the flattener:
/usr/local/carmaTools/cobra/CorrelatorBandMonitorChecker -v --flatten

– Wait until the flattener has decided it is done flattening or just isn’t quite finishing but things
look good enough in CDV.

– Again if on the RTS and needed then use~dwh/bin/host_comms to match up the coarse/fine
delays for the 2 inputs on the last digitizer card. The flattener is supposed to maintain this state
but either something else breaks it or the code has a flaw because they seem to not end up
matched all the time. This should be investigated and fixed.

– If you want you can flatten progressively tighter by running the flattener again and again, reduc-
ing its flatten criteria via the-flatten-cutoff=PS command line argument

– Start up theCorrelatorBandTimeChecker process.

– Use a sac session, RTD, and CDV to double check that the band isworking and can swing
correctly from 500 MHz mode into 62 MHz mode and back to 500 MHz. Repeat the test moving
from 500 Mhz to a narrowband mode and back to 500 Mhz for the 31,8, and 2 MHz bandwidth
modes.

– Done.

5.3. Board communications

In the COBRA system, access to the digitizer and correlator boards is provided by a device driver which
exposes the boards as multiple devices; download, control,data, monitor, stdio. The control, data, and



– 13 –

monitor threads within the server processes open specific device descriptors. The separate device descriptors
are required so that the different data types are demultiplexed at the driver level; where the interrupts due to
the different data types can be handled.

The proposal for the new CARMA boards is to create a virtual network over the PCI bus. The sockets API
would the be used to interface to the boards. The different data types from the board would be demultiplexed
by the TCP/IP stack, i.e., each data type would be a differentsocket connection. This implementation
was considered for the COBRA boards, however, the DSPs were too resource constrained, and a TCP/IP
stack was not available for the RTOS. In the CARMA design, both the board and the host CPU run Linux,
so passing ethernet packets over the PCI backplane between the Linux network drivers is possible. This
reduces the board-to-host Linux driver complexity, and allows the use of networking tools for debugging
and monitoring communications.

Development of the CARMA board software will initially use aPowerPC development board. Communica-
tion with the development board is via ethernet and sockets code. The objective for the new CARMA board
software would be to have the band server running on an x86 host receive board data using sockets code
to communicate to the development board. The CARMA board prototypes will have front-panel ethernet,
so the same sockets code will be used to test them. The ethernet interface has lower performance and less
determinism than a PCI interface, so when complete bands of CARMA hardware are deployed the code
would use the virtual network over PCI interface.

The current COBRA code does not communicate to boards using sockets. However, the bands server does
communication to band servers using the appropriate code. The bands server client connection code can be
used as the basis to develop the band server client connection code.

5.4. Control command requirements

The COBRA code uses a single thread to implement server commands. This enforces serialization of com-
mands to the hardware, i.e., since the hardware is busy, it can not handle another command. Unfortunately
this implementation does not work well with the CORBA control system 30s command timeout; long run-
ning commands exceed the timeout.

The COBRA control server code requires some rework. For example, the control server could be re-written
to use two threads; a server thread, and a worker thread that performs the commands. The server thread can
provide an immediate response to a long running command thatthe command has been accepted, and pass
it off to the worker thread. The server thread would then reject further commands until the long running
command completes. The control system is supposed to wait for a sequence number in the case of a long
running command, so rejection of control commands until thesequence number is returned in the monitor
stream is acceptable.

Basically the COBRA commands are implemented using synchronous I/O (the command returns when com-
plete), whereas asynchronous I/O is desired (the command returns immediately, and the sequence number



– 14 –

indicates when the command is complete).

The requirement for Asynchronous I/O for the band and board operations ultimately depends on how long
each function takes. For example, if it takes 2s to load the FPGAs on a board, and there are 15 boards in
a band. A band server implemented using a single thread to communicate with the boards will take 30s to
complete, however, a server that uses a thread per board willrequire 2s to complete. In that case, using
asynchronous I/O does not help the responsiveness of a band.

The current COBRA band server uses a single thread to deal with each board, so board operations are dealt
with in sequence rather than in parallel. This made sense forsome operations are the operations share a
common resource; the PCI bus.

5.5. CORBA translator asynchronous I/O

The CorrelatorCarmaServer supports making commands asynchronous internally. Incoming DO
commands are placed onto a queue and a separate thread actually dispatches them to the COBRA code in the
order they were queued. The queuer side will queue the request and then wait a short time (1 second?) to see
if the command can complete fast. If not then it just returns from the DO call and trusts that the command
will complete at some point. On the processor side CORBA commands are given up to 30 seconds to
complete before they time out and log the error. For commandswith a sequence number (bandwidth change
is the only one implemented at present) then the sequence number and success boolean info is posted by
the processor to a shared piece of memory when the call errorsout, times out, or completes successfully.
This shared piece of memory is read by the monitor publisher thread when each COBRA monitor packet
is received and the info is used to set the values of the CARMA monitor points for sequence numbers and
success state.

Something that could be explored is coalescing consecutivecompatible command requests in the queue.
This would allow things like combining consecutive delay sample commands that are queued behind a
bandwidth change command. If this is to be explored then I would recommend doing it on the processor
end of the queue. That is, the processor would keep popping things off the queue and combining them for
as long as a compatible command is available at the top of the queue. It would stop and actually issue to
the COBRA code when no more combinable commands are at the topof the queue. However, this whole
scheme is probably not needed if either the multiple consecutive command overhead is not hurting us or if
the upstream clients (i.e. the interferometry engine) can be taught to not issue such command sequences in
the first place.

At present, what seems to happen is a bandwidth change command followed immediately by a downcon-
verter settings command that stalls in the queue behind bandwidth change and then some number of delay
sample commands which also stall waiting for the BW change and DC settings command. It should be
examined if the DC settings command should be fused to the BW change to form a single command that set
the sequence number only when both pieces have been completed.



– 15 –

5.6. ACE logging redirect

TheCorrelatorBandServer,CorrelatorCarmaServer, andCorrelatorBandTimeChecker
processes can all be told to redirect ACE log messages to the CARMA logs. This is done by setting
redirectAceLogging=true on the command line. This in turn causes the code to call the instal-
lAceLoggingBackend() function defined in carma/correlator/obsRecord2/aceUtils.cc This will install a log-
ging backend hook class instance into the ACE logging system. At present the instance will throw away all
ACE logging events that are belowACE_WARN level and log the remaining logging event into the CARMA
logging system atWARN level with a prefix that tells you it was an ACE logging event and the ACE logging
level that was used. I don’t log at CARMAERROR level even for ACEERROR level because too many
things that aren’t actually errors get logged at this level in the COBRA code. This should be easy to clean
up and the policies in aceUtils.cc are pretty obvious and easy to adjust if and when it is needed.


