Isolated Neutron Stars Longair 13.5.1

- **Most** isolated neutron stars that are known are radio and γ-ray pulsars -
- These are rapidly spinning neutron stars that emit relativistic particles that radiate in a strong magnetic field
- The pulses originate from beams of radio emission emitted along the magnetic axis - the pulsar loses energy by electromagnetic radiation which is extracted from the rotational energy of the neutron star.
- In order to produce pulsed radiation from the magnetic poles, the magnetic dipole must be oriented at an angle with respect to the rotation axis and then the magnetic dipole displays a varying dipole moment
- Energy loss goes as $\Omega^4 B^2$
- As they radiate the star spins down - visible for $\sim 10^7$ yrs

- The shortest period (or angular velocity Ω) which a star of mass M and radius R can have without being torn apart by centrifugal forces is (approximately)
- $\Omega^2 R \sim GM/R^2$
- Putting in the average density of the star ρ,
- $\Omega \sim (G\rho)^{1/2}$

- Putting in some numbers rotation periods of $P=2\pi/\Omega \sim 1$ sec requires density of 10^8 gm/cm3
- To 'radiate' away the rotational energy $E_{rot} = 1/2 I\Omega^2 \sim 2\times 10^{46} I_{45} P^{-2}$ ergs
- Takes $\tau_{loss} \sim E_{rot}/L \sim 60 I_{45} P^{-2} L_{-7} \sim 1$ yr ($I=2/5MR^2$)
 - Where the moment of inertia I is in units of 10^{45} gm cm2

- If the star is spinning down at a rate $d\Omega/dt$ its rotational energy is changing at a rate $E_{rot} \sim I\Omega (d\Omega/dt) + 1/2 (dI/dt)\Omega^2 \sim 4\times 10^{32} I_{45} P^{-3} dP/dt$ ergs/sec

- However only a tiny fraction of the spindown energy goes into radio pulses - a major recent discovery is that most of it goes into particles and γ-rays.
Radiation Mechanism

\[-\frac{dE}{dt} \sim \Omega^4 \frac{p^2_{\text{m0}}}{6\pi c^3}. \text{eq 13.33} \]

Where \(p \) is the magnetic moment

- This magnetic dipole radiation extracts rotational energy from the neutron star.
- If \(I \) is the moment of inertia of the neutron star,
- \(\frac{d}{dt}[I\dot{X}^2] = I\dot{\Omega}\dot{\Omega}/dt = \Omega^4 \frac{p^2_{\text{m0}}}{6\pi c^3} \) and so \(\frac{d\Omega}{dt} \propto \Omega^3 \)
- The age of the pulsar can be estimated if it is assumed that its deceleration can be described by a law \(\frac{d\Omega}{dt} \propto \Omega^n \) if \(n \) throughout its lifetime
- It is conventional to set \(n = 3 \) to derive the age of pulsars
- and so \(\tau = P/(2 \frac{dP}{dt}) \).
- Using this relation the typical lifetime for normal pulsars is about \(10^5 - 10^8 \) years.

- Where radio pulsars lie in the \(P,\frac{dP}{dt} \) plot.
 - the lines correspond to constant magnetic field and constant age.
- If magnetic braking mechanism slows-down of the neutron star then (see eqs 13.40-13.42)
- \(B_s \approx 3 \times 10^{15}(P\frac{dP}{dt})^{1/2} \text{T} \).
Magnetars

Their defining properties occasional huge outbursts of X-rays and soft-gamma rays, as well as luminosities in quiescence that are generally orders of magnitude greater than their spin-down luminosities.

- Their are two classes: two classes, the ‘anomalous X-ray pulsars’ (AXPs) and the ‘soft gamma repeaters’ (SGRs)

Magnetars are thought to be young, isolated neutron stars powered ultimately by the decay of a very large magnetic field.

Their intense magnetic field [25, 26], inferred via spin-down to be in the range $10^{14}-10^{15}$G ‘quantum critical field’ $B_{\text{QED}}=m^2_e c^3/\hbar e=4.4\times10^{13}$G.

In their most luminous outburst magnetars can briefly out-shine all other cosmic soft-gamma-ray sources combined [Kaspi 2010]

- The growing diversity of NSs includes the Xray-Dim Isolated NSs (XDINSs), Central Compact Object (CCOs) Rotating Radio Transients (RRATs), AXPS and Magnetars, milli-seconds pulsars
- ‘Millisecond pulsars’ are rotation- powered, but have different evolutionary histories, involving long-lived binary systems and a ‘recycling accretion episode which spun-up the neutron star and quenched its magnetic field

Longair 13.5.3-13.5.5

Open circles are in binaries
Comparison of Spin Down Energy and γ-ray Luminosity of Pulsars

$L_{\gamma\text{ray}} = \text{spindown energy}$

Accreting Neutron Stars: Longair 13.5.2 - Also Ch 14

- These are the brightest x-ray sources in the sky and were the first x-ray sources discovered
- They have a wide range of properties (spectral and temporal) and show an almost bewildering array of behaviors
- Their luminosities range over 6 orders of magnitude
A Short Introduction to terminology

Accreting Neutron Stars

- Two types- based on mass of companions
 - Low mass x-ray binaries- NS star tends to have low magnetic field- BHs are transient
 - High mass- NS tends to have high magnetic field- BHs on all the time
Accreting Neutron Stars

- Two types- based on mass of companions
 - Low mass x-ray binaries-NS star tends to have low magnetic field- are 'old' (~10^9-10^10 yrs)-BHs are transient
 - High mass:NS tends to have high magnetic field- are are 'young' (~10^7.8 yrs)-BHs on all the time

<table>
<thead>
<tr>
<th></th>
<th>HMXB</th>
<th>LMXB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor star</td>
<td>O-B (M>5M_{sun})</td>
<td>K-M (M<1M_{sun})</td>
</tr>
<tr>
<td>Age/Population</td>
<td>10^7 yrs I</td>
<td>5-15x10^9 II</td>
</tr>
<tr>
<td>L_x/L_{opt}</td>
<td>0.001-10</td>
<td>10-1000</td>
</tr>
<tr>
<td>X-ray Spectrum</td>
<td>flat power law</td>
<td>kT<10keV,b remms-like</td>
</tr>
<tr>
<td>Orbital period</td>
<td>1-100d</td>
<td>10min-10d</td>
</tr>
<tr>
<td>X-ray eclipses</td>
<td>common</td>
<td>rare</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>strong (~10^{-12}G)</td>
<td>weaker (10^7-10^8 G)</td>
</tr>
<tr>
<td>X-ray pulsations</td>
<td>common (0.1-1000s)</td>
<td>rare (and often transient)</td>
</tr>
<tr>
<td>X-ray bursts</td>
<td>never</td>
<td>often</td>
</tr>
<tr>
<td>X-ray luminosity</td>
<td>~10^{35-37}</td>
<td>10^{33-38}</td>
</tr>
<tr>
<td># in MW</td>
<td>~35</td>
<td>~100</td>
</tr>
<tr>
<td>Accretion mode</td>
<td>stellar wind</td>
<td>Roche Lobe overflow</td>
</tr>
<tr>
<td>In glob clusters</td>
<td>never</td>
<td>frequently</td>
</tr>
</tbody>
</table>

(from M. Porzio)

Space Distribution of X-ray Binaries

- X-ray binaries are concentrated in the galactic plane and in the two nearby satellite galaxies of the Milky Way (the Magellanic clouds)
- Chandra images of XRB in nearby galaxies (core of M31 below)
M31 and the Antenna

- Chandra can see x-ray binaries to d~100 Mpc
- allows population studies relation of x-ray binaries to galaxy properties

Relation to Star Formation

- Since HMXB are young stars the relative number of them should be related to amount of star formation in the galaxy!
- Another way of measuring star formation rate

Example of a theoretical model of the luminosity in x-ray binaries in a star forming galaxy Eracleous et al 2009
Basics of Accretion – Longair 14.2

• If accretion takes place at a rate \(\frac{dM}{dt} = \dot{M} \) then the potential energy gained by the material is

\[
E = G \frac{M_x}{R} \quad \text{where} \quad M_x \text{ is the mass of the accreting object) - if this energy is released as radiation it also is the luminosity } L_{\text{acc}}
\]

• Normalizing the observed luminosity to a typical value of \(1.3 \times 10^{37} \text{ erg/sec} \) gives accretion rates of

\[
L_{\text{acc}} = 1.3 \times 10^{37} \dot{M}_{17} m_x R_6
\]

• \(\dot{M}_{17} \) is \(\dot{M} \) in units of \(10^{17} \text{ gm/sec}= 1.5 \times 10^{-9} M_{\text{sun}}/\text{yr} \)
• \(R_6 \) is the radius in units of \(10^6 \text{ cm} \)
• \(m_x \) is the mass in solar units

Basics of Accretion Longair 14.2.2

Is there a limit on accretion?

If the accreting material is exposed to the radiation it is producing it receives a force due to radiation pressure

The minimum radiation pressure is

\[
(\text{Flux}/c)\sigma \quad (\sigma \text{ is the relevant cross section})
\]

Or

\[
L \sigma_T / 4 \pi r^2 m_p c \quad (\sigma_T \text{ is the Thompson cross section } (6.6 \times 10^{-25} \text{ cm}^2) \text{ } m_p \text{ is the mass of the proton})
\]

The gravitational force on the proton is

\[
GM_x / R^2
\]

Equating the two gives the Eddington limit

\[
L_{\text{Edd}} = 4 \pi M_x G m_p c / \sigma_T = 1.3 \times 10^{38} M_{\text{sun}} \text{ erg/sec}
\]

Frank, King & Raine, “Accretion Power in Astrophysics”,
Eddington Limit- More Detail Longair pg 446

- $f_{\text{grav}} \approx \frac{G M m_p}{r^2}$ force due to gravity acting on the protons
- The radiation pressure acts upon the electron-
- Each photon gives up a momentum $p = h \nu / c$ to the electron in each collision
- force acting on the electron is the momentum communicated to it per second by the incident flux density of photons N_{ph}.
- Thus, $f_{\text{rad}} = \sigma_T N_{\text{ph}} p$ (p is momentum, σ_T is the relevant cross section, the smallest is the Thompson cross section $6.6 \times 10^{-29} \text{ m}^2$)
- As we go away from the source of photons the flux of photons is
 - $N_{\text{ph}}/4 \pi r^2$; $N_{\text{ph}} = L/h \nu$; L is the luminosity of the source.
 - so the outward force on the electron is $f = \sigma_T L / 4 \pi c r^2$.
- Equation this to gravity (e.g. radiation pressure and gravity balance)
 - Gives $L_E = 4 \pi G M m_p c / \sigma_T$

 - maximum luminosity a spherically symmetric source of mass M can emit in a steady state. The limiting luminosity is independent
 - of the radius r and depends only upon the mass M of the emitting region

Simplistic Check

- If a NS is accreting at the Eddington limit and radiating via a black body what is its temperature?
 - $4 \pi r^2_{\text{NS}} \sigma T^4 = L_{\text{edd}}$

 - So put in 10 km for r_{ns} and $1.3 \times 10^{31} \text{ W}$ for L_{edd} for 1 solar mass and get
 - $(a=5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4})$
 - $T \sim 2 \times 10^7 \text{ K}$; 'natural' for NS to radiate in the x-ray band.
Accretion - Basic idea

- Viscosity/friction moves angular momentum outward
 - allowing matter to spiral inward
 - Accreting onto the compact object at center

Gravitational potential energy is converted by friction to heat. Some fraction is radiated as light.

Very efficient process
Energy \(\sim \frac{GM}{R} = 1.7 \times 10^{16} \text{ (R/10km)}^{-1} \text{ J/kg} \sim 1/2mc^2 \)

Nuclear burning releases \(\sim 7 \times 10^{14} \text{ J/kg} \) (0.4% of \(mc^2 \))

- \(L = 1/2m \cdot c^2 (rg/R) \) (14.3)
- This expression for the luminosity can be written \(L = \xi m \cdot c^2 \), where \(\xi \) is the efficiency of conversion of the rest-mass energy of the accreted matter into heat.
- the efficiency is roughly \(\xi = (rg/2R) \) and so depends upon how compact the star is. For a white dwarf star with \(M = M_\odot \) and \(R = 5 \times 10^6 \text{ m} \), \(\xi = 3 \times 10^{-4} \).
- For a neutron star with mass \(M = M_\odot \) and \(R = 10 \text{ km} \), \(\xi \approx 0.15 \).
- In the case of nuclear energy generation, the greatest release of nuclear binding energy occurs in the conversion of hydrogen into helium for which \(\xi \approx 7 \times 10^{-3} \).
- Thus, accretion onto neutron stars is an order of magnitude more efficient as an energy source than nuclear energy generation.

Gravitational potential of spherically symmetric mass \(M \) of radius \(R \)

\[\Phi = -\frac{GM}{r} \quad (r > R) \]

Acceleration of gravity

\[g = -\nabla \Phi = -\frac{GM}{r^2} \hat{r} \]

Particles freely falling from \(r \to \infty \) to \(r \):

\[E_K = \frac{1}{2}v^2 = (\text{kinetic energy per unit mass}) \]

Energy conservation:

\[E_K + \Phi = E = \text{cst.} \]

At \(r \):

\[v^2 = \frac{2GM}{r} = (\text{free-fall or escape speed}) \]

Viral temperature \(T_{\text{vir}} = \frac{GM}{kr} \); for a NS \(M \sim 1.4M_{\odot} \), \(R \sim 10 \text{ km} \)

\[T \sim 10^{12} \text{k} \]

(H. Spruit)
The Known Galactic Black holes

Figure by Jerome Arthur Orosz

Accretion from a Dwarf Companion

http://physics.technion.ac.il/~astrogr/research/animation_cv_disc.gif