<u>Gravitational Lensing - Einstein's General Relativity Theory</u> <u>Mass Bends Light</u>

"The Einstein Cross"

How do we know that there really is a disk??

- microlensing observations of a few QSOs have 'resolved' the xray and optical sources
- The optical source size and dependence of luminosity on wavelength are consistent with standard disk theory

Lensing Data

 Constraint on disk size (probability vs size in light days) Jimenez-Vicente et al 2012

X-ray image of lensed quasar Chartas et al 2012

In galactic black holes there is a pattern to the spectral/intensity changes

The high soft state is disk dominated

The low hard state is dominated by the x-ray power law

The 'variability' - represented by the root mean square (RMS) variations is also related to the state

It is believed that these states are related to the geometry of the accretion flow

State transitions-(Gierlinski and Done 2003)

The wide range in the ratio of the two is related to the Eddington ratio- states

At $L \rightarrow L_{Edd}$ Spectrum more disk dominated

Where do the Spectral Components Arise?

Optically-thick part of the accretion disk emits thermal spectrum... black body radiation with

$$T = \left(\frac{3GM\dot{M}}{8\pi r^3\sigma_{\rm SB}}\right)^{1/4}$$

X-ray "tail" probably comes from a hot corona that sandwiches the disk... inverse Compton scattering of thermal disk emission by electrons with T~10⁹K

Spectral States of Black Hole Binaries

- thought to be due to changes in disk structure not seen in AGN (yet)
 - Dramatic changes in continuum – single object, different days
 - Underlying pattern in all systems
 - High L/L_{Edd} : soft spectrum, peaks at kT_{max} often disc-like, plus tail
 - Lower L/L_{Edd}: hard spectrum, peaks at high energies, not like a disc (McClintock & Remillard 2006)

Cygnus X-1 Spectral States and Ideas on Geometry

- Many (but not all) black hole binaries follow a similar track
- (each color is a different object)

adapted from Belloni

STRONG GRAVITY - BLACK HOLES HOW DO QUASARS WORK?

THIN DISK

A. Fabian

Stellar mass – ULX – AGN – Quasar

STRONG GRAVITY - BLACK HOLES

A. Fabian

THIN DISK

Reflection, high velocities, gravitational redshift, light bending predicted

Even More Geometries

From C. Done

Next Topic- reprocessing
 Need your project titles SOON

Reprocessing- how can we learn about the material in and around the black hole from spectral and temporal signatures in the spectra

Spin and its influence

X-ray "reflection" imprints well-defined features in the spectrum

Disc X-ray reverberation

 Some are reflected (iron line and reflection continuum)

The absorbed fraction is thermalised and re-emitted at the local disc temperature

'Reflection'- Reprocessing of Photons in the Disk

The larger cross section at low energies of photoelectric absorption

 $\tau_{Thompson} = 1$

means that low *E* photons are absorbed not scattered and some are re-emitted as lines via fluorescence. Compton scattering reduces the energy of the high energy photons. The combination produces a characteristic peak in the spectrum.

Components in High State- R. Reis 2010

X-ray reflection "Reflection' is Compton scattering

Important consequence of corona: underlying disk is irradiated by intense X-ray source... results in a characteristic spectrum being "reflected" from the disk surface layers Different amounts of flux can change ionization of disk

Iron Ka fluorescence from the Sun

energy levels for Cu

Parmar et al. (1984) Solar Maximum Mission (Bent Crystal Spectrometer)

With very high resolution there are 2 Fe K flourescent feature $K\alpha 1$, $K\alpha 2$

Relativistic effects- C. Done

- Relativistic effects (special and general) affect all emission (Cunningham 1975)
- Hard to easily spot on continuum components
- Fe Kα line from irradiated disc
 broad and skewed! (Fabian et al 1989)
- Broadening gives an independent measure of Rin – so spin if ISCO (Laor 1991)

Relativistic effects imprint characteristic profile on the emission line...

Andy Young

[Laura Brenneman]

Observations of relativistic emission lines

- First seen in 1994 with ASCA observatory
- 5 day observation of Seyfert-1 galaxy MCG-6-30-15
- Needed long observation to collect enough photons to form detailed spectrum

Power-law continuum subtracted ASCA: Tanaka et al. (1995)

- Modern XMM-Newton observations
- Confirm relativistic line with extreme redshifts
- If no line emission from within ISCO, need to invoke spinning black hole to get strong enough redshifting

Power-law continuum subtracted XMM: Fabian et al. (2002)

Relativistic Effects

- Light rays are bent by strong gravity- making the geometry rather complicated
- Do not know 'where' x-ray source is try to use data to figure it out

if we only knew where the x-rays come from ($h_s \sim$ r_{s)} from time váriability arguments

5 10 15 20

-20 -15 -10 -5

Strong light bending

Spectra have lots of information...

Spin- is measured in units of a=cJ/GM²

Why Measure Spin

- BH has only 3 measurable properties Mass, spin, charge.
- Black hole spins affects
 - the efficiency of the accretion processes, hence the radiative output
 - how much energy is extractable from the hole itself
 - the retention of black holes in galaxies
 - gravitational wave signature
 - possible origin of jets.
- Origin of BH Spin
 - natal
 - history

Spin

- For galactic black holes- not enough accretion to account for spin being due to accretion of angular momentum- need to accrete ~3/4 of the mass to spin it up to the maximal spin
- If accreting at the Eddington limit takes a very long time (~10⁸ yrs)
 - too long for wind fed or Roche
 Lobe systems
 - too much mass for low mass companions
- Spin is natal in galactic mass black holes

Spin

- For supermassive black holes- If accreting at the Eddington limit ($\sim 10^8 M_{\odot}$ accretes 0.25 M_{\odot}/yr) so takes 4x10⁸ yrs to double its mass and spin up
- Spin can be due to accretion
- Requires 'organized' accretion of angular momemtum

Alternatively spin could be due to mergers of black holes

mergers only (left), mergers and prolonged accretion (center), and mergers and chaotic accretion

L.Brenneman- is a measure of the probability- for 1 degree of freedom and Gaussian statistics =2.7 corresponds to 90% confidence

Present knowledge of spin in Galactic Black Holes- R. Reis 2010

