
Synchrotron Radiation

The synchrotron radiation, the emission of very relativistic and ultrarelativistic
electrons gyrating in a magnetic field, is the process which dominates much of high
energy astrophysics. It was originally observed in early betatron experiments in
which electrons were first accelerated to ultrarelativistic energies. This process is
responsible for the radio emission from the Galaxy, from supernova remnants and
extragalactic radio sources. It is also responsible for the non-thermal optical and
X-ray emission observed in the Crab Nebula and possibly for the optical and X-ray
continuum emission of quasars.

The word non-thermal is used frequently in high energy astrophysics to describe the
emission of high energy particles. This an unfortunate terminology since all
emission mechanisms are ‘thermal’ in some sense. The word is conventionally
taken to mean ‘continuum radiation from particles, the energy spectrum of which is
not Maxwellian’. In practice, continuum emission is often referred to as ‘non-thermal’
if it cannot be described by the spectrum of thermal bremsstrahlung or black-body
radiation.
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Motion of an Electron in a Uniform, Static
Magnetic field

We begin by writing down the equation of motion for a particle of rest mass m0,
charge ze and Lorentz factor γ = (1− v2/c2)−1/2 in a uniform static magnetic
field B.

d

dt
(γm0v) = ze(v ×B) (1)

We recall that the left-hand side of this equation can be expanded as follows:

m0
d

dt
(γv) = m0γ

dv

dt
+ m0γ3v

(v · a)

c2
(2)

because the Lorentz factor γ should be written γ = (1− v · v/c2)−1/2. In a
magnetic field, the three-acceleration a = dv/dt is always perpendicular to v and
consequently v · a = 0. As a result,

γm0 dv/dt = ze(v ×B) (3)
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Motion of an Electron in a Uniform, Static
Magnetic field

We now split v into components parallel
and perpendicular to the uniform
magnetic field, v‖ and v⊥ respectively.
The pitch angle θ of the particle’s path is
given by tan θ = v⊥/v‖, that is, θ is the
angle between the vectors v and B.
Since v‖ ×B = 0, v‖ = constant. The
acceleration is perpendicular to the
magnetic field direction and to v‖.

γm0
dv

dt
= zev⊥B(i⊥×iB) = zevB(iv×iB)

(4)
where iv and iB are unit vectors in the
directions of v and B respectively.
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Gyrofrequencies

Thus, the motion of the particle consists of a constant velocity along the magnetic
field direction and circular motion with radius r about it. This means that the particle
moves in a spiral path with constant pitch angle θ. The radius r is known as the
gyroradius of the particle. The angular frequency of the particle in its orbit ωg is
known as the angular cyclotron frequency or angular gyrofrequency and is given by

ωg = v⊥/r = zeB/γm0 (5)

The corresponding gyrofrequency νg, that is, the number of times per second that
the particle rotates about the magnetic field direction, is

νg = ωg/2π = zeB/2πγm0 (6)

In the case of a non-relativistic particle, γ = 1 and hence νg = zeB/2πm0.

A useful figure to remember is the non-relativistic gyrofrequency of an electron
νg = eB/2πme = 28 GHz T−1 where the magnetic field strength is measured in
tesla; alternatively, νg = 2.8 MHz G−1 for those not yet converted from gauss (G)
to teslas (T).
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The Total Energy Loss Rate

Most of the essential tools needed in this analysis have
already been derived. First of all, use the expression for
the acceleration of the electron in its orbit and insert this
into the expression for the radiation rate of a relativistic
electron. The acceleration is always perpendicular to the
velocity vector of the particle and to B and hence a‖ = 0.
Therefore, the total radiation loss rate of the electron is

−
(
dE

dt

)
=

γ4e2

6πε0c3
|a⊥|2 =

γ4e2

6πε0c3
e2v2B2 sin2 θ

γ2m2
e

(7)

=
e4B2

6πε0cm2
e

v2

c2
γ2 sin2 θ (8)
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The Total Energy Loss Rate - Another Approach

Let us start from the fact that in the instantaneous rest frame
of the electron, the acceleration of the particle is small and so
we can use the non-relativistic expression for the radiation
rate. The instantaneous direction of motion of the electron in
the laboratory frame, the frame in which B is fixed, is taken
as the positive x-axis. We now transform the field quantities
into the instantaneous rest frame of the electron. In S′, the
force on the electron is

f ′ = mev̇
′ = e(E′+ v′ ×B′) = eE′ (9)

since the particle is instantaneously at rest in S′. Therefore,
in transforming B into S′, we need only consider the
transformed components for the electric field E′.

E′x = Ex E′x = 0

E′y = γ(Ey − vBz) and so E′y = −vγBz = −vγB sin θ

E′z = γ(Ez + vBy) E′z = 0
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Therefore

v̇′ = −
eγvB sin θ

me
(10)

Consequently, in the rest frame of the electron, the loss rate by radiation is

−
(
dE

dt

)′
=

e2|v̇′|2

6πε0c3
=

e4γ2B2v2 sin2 θ

6πε0c3m2
e

(11)

Since (dE/dt) is a Lorentz invariant, we recover the formula (8). Recalling that
c2 = (µ0ε0)

−1, let us rewrite this in the following way

−
(
dE

dt

)
= 2

(
e4

6πε20c4m2
e

)(
v

c

)2
c

B2

2µ0
γ2 sin2 θ (12)

The quantity in the first set of round brackets on the right-hand side of (8) is the
Thomson cross-section σT. Therefore

−
(
dE

dt

)
= 2σTcUmag

(
v

c

)2
γ2 sin2 θ (13)

where Umag = B2/2µ0 is the energy density of the magnetic field.
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The Average Energy Loss Rate

In the ultrarelativistic limit, v → c, we may approximate this result by

−
(
dE

dt

)
= 2σTcUmagγ2 sin2 θ (14)

These results apply for electrons of a specific pitch angle θ. Particles of a particular
energy E, or Lorentz factor γ, are often expected to have an isotropic distribution of
pitch angles and therefore we can work out their average energy loss rate by
averaging over such a distribution of pitch angles p(θ) dθ = 1

2 sin θ dθ

−
(
dE

dt

)
= 2σTcUmagγ2

(
v

c

)2 1

2

∫ π

0
sin3 θdθ

= 4
3σTcUmag

(
v

c

)2
γ2 (15)

There is a deeper sense in which (15) is the average loss rate for a particle of energy
E. During its lifetime, it is likely that the high energy particle is randomly scattered in
pitch angle and then (15) is the correct expression for its average energy loss rate.
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Non-relativistic gyroradiation and cyclotron radiation

Consider first the simplest case of non-relativistic gyroradiation, in which case v � c

and hence γ = 1. Then, the expression for the loss rate of the electron is

−
(
dE

dt

)
= 2σT cUmag

(
v

c

)2
sin2 θ =

2σT

c
Umagv2

⊥ (16)

and the radiation is emitted at the gyrofrequency of the electron νg = eB/2πme.

In the non-relativistic case, there are no beaming effects and the polarisation
observed by the distant observer can be derived from the rules given above. When
the magnetic field is perpendicular to the line of sight, linearly polarised radiation is
observed because the acceleration vector is observed to perform simple harmonic
motion in a plane perpendicular to the magnetic field by the distant observer. The
electric field strength varies sinusoidally at the gyrofrequency. When the magnetic
field is parallel to the line of sight, the acceleration vector is continually changing
direction as the electron moves in a circular orbit about the magnetic field lines and
therefore the radiation is observed to be 100% circularly polarised. Between these
cases, the radiation is observed to be elliptically polarised, the ratio of axes of the
polarisation ellipse being cos θ.
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Mildly Relativistic Cyclotron Radiation

Even for slowly moving electrons, v � c, not all the radiation is emitted at the
gyrofrequency because there are small aberration effects which slightly distort the
polar diagram from a cos θ law. From the symmetry of these aberrations, the
observed polar diagram of the radiation can be decomposed by Fourier analysis into
a sum of equivalent dipoles radiating at harmonics of the relativistic gyrofrequency
νr where νr = νg/γ. These harmonics have frequencies

νl = lνr/

(
1−

v‖
c

cos θ

)
(17)

where l takes integral values, l = 1,2,3, .. and the fundamental gyrofrequency has
l = 1. The factor [1− (v‖/c) cos θ] in the denominator takes account of the
Doppler shift of the radiation of the electron due to its translational velocity along the
field lines, projected onto the line of sight to the observer, v‖. In the limit lv/c � 1, it
can be shown that the total power emitted in a given harmonic for the case v‖ = 0 is

−
(
dE

dt

)
l
=

2πe2ν2
g

ε0c

(l + 1)l2l+1

(2l + 1)!

(
v

c

)2
(18)
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Mildly Relativistic Cyclotron Radiation

Hence, to order of magnitude,(
dE

dt

)
l+1

/(
dE

dt

)
l
≈
(

v

c

)2
(19)

Thus, the energy radiated in high harmonics is small when the particle is
non-relativistic.

When the particle becomes significantly relativistic, v/c ≥ 0.1, the energy radiated
in the higher harmonics becomes important. The Doppler corrections to the
observed frequency of the emitted radiation become significant and a wide spread
of emitted frequencies is associated with the different pitch angles of an electron of
energy E = γmc2. The result is broadening of the width of the emission line of a
given harmonic and, for high harmonics, the lines are so broadened that the
emission spectrum becomes continuous rather than consisting of a series of
harmonics at well defined frequencies.

11



Mildly Relativistic Cyclotron Radiation

The results of calculations for a
relativistic plasma having
kTe/mec2 = 0.1, corresponding to
γ = 1.1 and v/c ≈ 0.4, are shown in
the diagram. The spectra of the first
twenty harmonics are shown as well as
the total emission spectrum found by
summing the spectra of the individual
harmonics. One way of looking at
synchrotron radiation is to consider it as
the relativistic limit of the process
illustrated in the diagram in which all the
harmonics are washed out and a
smooth continuum spectrum is
observed.
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Mildly Relativistic Cyclotron Absorption

A remarkable example of the application of
these formulae in absorption occurred in the
transient X-ray pulsar V0332+53 observed by
the INTEGRAL and RXTE satellites. The source
exhibited a very powerful outburst in Dec, 2004
– Feb, 2005 in a wide (3-100 keV) energy band.
A cyclotron resonance scattering line at an
energy of 26 keV was detected together with its
two higher harmonics at 50 and 73 keV,
respectively (Tsygankov, Lutovinov, Churazov
and Sunyaev 2005).

13



Cyclotron Emission in AM Herculis Binaries

The harmonics of cyclotron radiation are circularly polarised and so it is possible to
learn a great deal about the strength of the magnetic field strength and its
orientation with respect to the line of sight. Circularly polarised optical emission has
been discovered in the eclipsing magnetic binary stars known as AM Herculis
binaries, in which a red dwarf star orbits a white dwarf. Circular polarisation
percentages as large as 40% is observed. Accretion of matter from the surface of
the red dwarf onto the magnetic poles of the white dwarf heats the matter to
temperatures in excess of 107 K. In the X-ray source EXO 033319-2554.2, the
magnetic flux density turns is 5600 T.
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Spectrum of Synchrotron Radiation
Physical Arguments

One of the basic features of the radiation of relativistic particles in general is the fact
that the radiation is beamed in the direction of motion of the particle. Part of this
effect is associated with the relativistic aberration formulae between the frame of
reference of the particle and the observer’s frame of reference. There are, however,
subtleties about what is observed by the distant observer because, in addition to
aberration, we have to consider the time development of what is seen by the distant
observer.

Let us consider first the simple case of a particle gyrating about the magnetic field at
a pitch angle of 90◦. The electron is accelerated towards its guiding centre, that is,
radially inwards, and in its instantaneous rest frame it emits the usual dipole pattern
with respect to the acceleration vector.
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Beaming of the Emitted Radiation

We can therefore work out the radiation pattern in the laboratory frame of reference
by applying the aberration formulae with the results illustrated schematically in the
diagrams. The angular distribution of radiation with respect to the velocity vector in
the frame S′ is Iν ∝ sin2θ′ = cos2 φ′. We may think of this as being the probability
distribution with which photons are emitted by the electron in its rest frame. The
appropriate aberration formulae between the two frames are:

sinφ =
1

γ

sinφ′

1 + (v/c) cosφ′
; cosφ =

cosφ′+ v/c

1 + (v/c) cosφ′
(20)

16



Beaming of the Emitted Radiation

Consider the angles φ′ = ±π/4 in S′, the angles at which the intensity of radiation
falls to half its maximum value in the instantaneous rest frame. The corresponding
angles φ in the laboratory frame of reference are

sinφ ≈ φ ≈ 1/γ (21)

The radiation emitted within −π/4 < φ′ < π/4 is beamed in the direction of motion
of the electron within −1/γ < φ < 1/γ. A large ‘spike’ of radiation is observed
every time the electron’s velocity vector lies within an angle of about 1/γ to the line
of sight to the observer. The spectrum of the radiation is the Fourier transform of this
pulse once the effects of time retardation and aberration are taken into account.
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The Duration of the Observed Pulse
The observer sees significant radiation for only
about 1/γ of the particle’s orbit but the observed
duration of the pulse is less than 1/γ times the
period of the orbit because radiation emitted at
the trailing edge of the pulse almost catches up
with the radiation emitted at the leading edge.
The observer is located at a distance R from the
point A. The radiation from A reaches the
observer at time R/c. The radiation is emitted
from B at time L/v later and then travels a
distance (R− L) at the speed of light to the
observer. The trailing edge of the pulse
therefore arrives at a time L/v + (R− L)/c.
The duration of the pulse as measured by the
observer is therefore

∆t =

[
L

v
+

(R− L)

c

]
−

R

c
=

L

v

(
1−

v

c

)
.

(22)
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The Duration of the Observed Pulse

Notice that the observed duration of the pulse is much less than value L/v. Only if
light propagated at an infinite velocity would the duration of the pulse be L/v. The
factor 1− (v/c) is exactly the same factor which appears in the Liénard-Weichert
potential and takes account of the fact that the source of radiation is not stationary
but is moving towards the observer. We now rewrite the above expression noting
that

L

v
=

rgθ

v
≈

1

γωr
=

1

ωg
(23)

where ωg is the non-relativistic angular gyrofrequency and ωr = ωg/γ. We can also
rewrite (1− v/c) as

(
1−

v

c

)
=

[1− (v/c)] [1 + (v/c)]

[1 + (v/c)]
=

(
1− v2/c2

)
1 + (v/c)

≈
1

2γ2
(24)

since v ≈ c. Therefore, the observed duration of the pulse is roughly

∆t ≈
1

2γ2ωg
(25)

The duration of the pulse in the laboratory frame of reference is roughly 1/γ2 times
shorter than the non-relativistic gyroperiod Tg = 2π/ωg.
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The Observed Frequency of Synchrotron Radiation

The maximum Fourier component of the spectral decomposition of the observed
pulse of radiation is expected to correspond to a frequency ν ∼ ∆t−1, that is,

ν ∼ ∆t−1 ∼ γ2νg (26)

where νg is the non-relativistic gyrofrequency.

In the above analysis, it has been assumed that the particle moves in a circle about
the magnetic field lines, that is, the pitch angle θ is 90◦. The same calculation can
be performed for any pitch angle and then the result becomes

ν ∼ γ2νg sin θ (27)

The reason for performing this simple exercise in detail is that the beaming of the
radiation of ultrarelativistic particles is a very general property and does not depend
upon the nature of the force causing the acceleration.

20



Curvature Radiation

Returning to an earlier part of the calculation, the observed frequency of the
radiation can also be written

ν ≈ γ2νg = γ3νr =
γ3v

2πrg
(28)

where νr is the relativistic gyrofrequency and rg is the radius of curvature of the
particle’s orbit. Notice that, in general, we may interpret rg as the instantaneous
radius of curvature of the particle’s orbit and v/rg is the angular frequency
associated with it. This is a useful result because it enables us to work out the
frequency at which most of the radiation is emitted, provided we know the radius of
curvature of the particle’s orbit. The frequency of the observed radiation is roughly
γ3 times the angular frequency v/r where r is the instantaneous radius of curvature
of the particle in its orbit. This result is important in the study of curvature radiation
which has important applications in the emission of radiation from the magnetic
poles of pulsars.
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Synchrotron radiation - improved version

There is no particularly simple way of deriving the spectral distribution of
synchrotron radiation and I do not find the analysis particularly appealing - see
HEA1 for the gruelling details. The analysis proceeds by the following steps:

• Write down the expression for the energy emitted per unit bandwidth for an
arbitrarily moving electron;

• Select a suitable set of coordinates in which to work out the field components
radiated by the electron spiralling in a magnetic field;

• Then battle away at the algebra to obtain the spectral distribution of the field
components.
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The Results
The emitted spectrum of a single electron, averaged
over the particle’s orbit is

j(ω) = j⊥(ω)+j‖(ω) =

√
3e3B sin θ

8π2ε0cme
F (x) (29)

where

x = ω/ωc, ωc = 3
2

(
c

v

)
γ3ωr sin θ (30)

and

F (x) = x
∫ ∞
x

K5/3(z) dz. (31)

ωc is known as the critical angular frequency.
K5/3(z) is a modified Bessel function of order 5/3.
The form of this spectrum in terms of angular fre-
quency ω is shown in linear and logarithmic form
in the diagrams. It has a broad maximum centred
roughly at the frequency ν ≈ νc with ∆ν/ν ∼ 1.
The maximum of the emission spectrum has value
νmax = 0.29νc.
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The Results (continued)

The high frequency emissivity of the electron is given by an expression of the form

j(ν) ∝ ν1/2e−ν/νc (32)

which is dominated by the exponential cut-off at frequencies ν � νc. This simply
means that there is very little power at frequencies ν > νc which can be understood
on the basis of the physical arguments developed earlier – there is very little
structure in the observed polar diagram of the radiation emitted by the electron at
angles θ � γ−1. At low frequencies, ν � νc, the spectrum is given by j(ν) ∝ ν1/3

The ratio of the powers emitted in the polarisations parallel and perpendicular to the
magnetic field direction is

I⊥
I‖

= 7. (33)

To find the polarisation observed from a distribution of electrons at a particular
observing frequency, however, we need to integrate over the energy spectrum of the
emitting electrons.
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The Synchrotron Radiation of a Power-law
Distribution of Electron Energies

The emitted spectrum of electrons of energy E is quite sharply peaked near the
critical frequency νc and is very much narrower than the breadth of the electron
energy spectrum. Therefore, to a good approximation, it may be assumed that all
the radiation of an electron of energy E is radiated at the critical frequency νc which
we may approximate by

ν ≈ νc ≈ γ2νg =
(

E

mec2

)2
νg; νg =

eB

2πme
. (34)

Therefore, the energy radiated in the frequency range ν to ν + dν can be attributed
to electrons with energies in the range E to E + dE, which we assume to have
power-law form N(E) = κE−p. We may therefore write

J(ν) dν =
(
−

dE

dt

)
N(E) dE. (35)
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(continued)

Now

E = γmec
2 =

(
ν

νg

)1/2

mec
2, dE =

mec2

2ν
1/2
g

ν−1/2dν, (36)

and

−
(
dE

dt

)
= 4

3σTc

(
E

mec2

)2 B2

2µ0
. (37)

Substituting these quantities into (35), the emissivity may be expressed in terms of
κ, B, ν and fundamental constants.

J(ν) = (constants) κB(p+1)/2ν−(p−1)/2. (38)

If the electron energy spectrum has power law index p, the spectral index of the
synchrotron emission of these electrons, defined by J(ν) ∝ ν−α, is α = (p− 1)/2.
The spectral shape is determined by the shape of the electron energy spectrum
rather than by the shape of the emission spectrum of a single particle. The quadratic
nature of the relation between emitted frequency and the energy of the electron
accounts for the difference in slopes of the emission spectrum and the electron
energy spectrum.
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Why is Synchrotron Radiation Taken so Seriously?

• Comparison of the local flux of relativistic electrons measured at the top of the
atmosphere with the predicted synchrotron emissivity of the interstellar medium
are in reasonable agreement.

• A convincing case can be made that the relativistic electrons are accelerated in
supernova remnants which are very strong radio sources with power-law
intensity spectra and the radio emission is linearly polarised.

• The intense extragalactic radio sources have qualitatively the same properties
of power-law radio spectra and polarised radiation, but with intrinsic luminosities
which are up to 108 greater than that of our own Galaxy. The radio emission
originates from enormous radio lobes rather than from the galaxy itself. The only
reasonable explanation is that the emission is the synchrotron radiation of high
energy electrons gyrating in magnetic fields within the radio lobes (see later).

• Direct evidence for relativistic particles in active galactic nuclei comes from the
very high brightness temperatures observed in compact radio sources, that it,
we need to analyse the process of synchrotron self-absorption.
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Synchrotron Self-absorption

According to the principle of detailed balance, to every emission process there is a
corresponding absorption process – in the case of synchrotron radiation, this is
known as synchrotron self-absorption.

Suppose a source of synchrotron radiation has a power law spectrum, Sν ∝ ν−α,
where the spectral index α = (p− 1)/2. Its brightness temperature is defined to be
Tb = (λ2/2k)(Sν/Ω), and is proportional to ν−(2+α), where Sν is its flux density
and Ω is the solid angle it subtends at the observer at frequency ν. We recall that
brightness temperature is the temperature of a black-body which would produce the
observed surface brightness of the source at the frequency ν in the Rayleigh-Jeans
limit, hν � kTe. Thus, at low enough frequencies, the brightness temperature of the
source may approach the kinetic temperature of the radiating electrons. When this
occurs, self-absorption becomes important since thermodynamically the source
cannot emit radiation of brightness temperature greater than its kinetic temperature.
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Synchrotron Self-absorption

The energy spectrum of the electrons N(E) dE = κE−p dE is not a thermal
equilibrium spectrum, which for relativistic particles would be a relativistic
Maxwellian distribution. The concept of temperature can still be used, however, for
particles of energy E. The spectrum of the radiation emitted by particles of energy
E is peaked about the critical frequency ν ≈ νc ≈ γ2νg. Thus, the emission and
absorption processes at frequency ν are associated with electrons of roughly the
same energy. Second, the characteristic time-scale for the relativistic electron gas to
relax to an equilibrium spectrum is very long indeed under typical cosmic conditions
because the particle number densities are very small and all interaction times with
matter are very long. Therefore, we can associate a temperature Te with electrons
of a given energy through the relativistic formula which relates particle energy to
temperature

γmec
2 = 3kTe. (39)

Recall that the ratio of specific heats γSH is 4
3 for a relativistic gas. The internal

thermal energy density of a gas is u = NkT/(γSH − 1), where N is the number
density of particles. Setting γSH = 5

3, we obtain the classical result and, setting
γSH = 4

3, we obtain the above result for the mean energy per particle.
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Synchrotron Self-absorption

The important point is that the effective temper-
ature of the particles now becomes a function of
their energies. Since γ ≈ (ν/νg)1/2,

Te ≈ (mec
2/3k)(ν/νg)

1/2. (40)

For a self-absorbed source, the brightness tem-
perature of the radiation must be equal to the ki-
netic temperature of the emitting particles, Tb =

Te, and therefore, in the Rayleigh-Jeans limit,

Sν =
2kTe

λ2
Ω =

2me

3ν
1/2
g

Ω ν5/2 ∝
θ2ν5/2

B1/2
,

(41)
where Ω is the solid angle subtended by the
source, Ω ≈ θ2. Spectra of roughly this form are
found at radio, centimetre and millimetre wave-
lengths from the nuclei of active galaxies and
quasars.
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Synchrotron Self Absorption

It is a straightforward, but long, calculation to work out the absorption coefficient
χ(ν) for synchrotron self-absorption (see HEA2, Sect. 18.1.7). The result for a
randomly oriented magnetic field is,

χν =

√
3πe3κB(p+2)/2c

64π2ε0me

(
3e

2πm3
ec4

)p/2 Γ
(
3p+22

12

)
Γ
(
3p+2
12

)
Γ
(

p+6
4

)
Γ
(

p+8
4

) ν−(p+4)/2,

(42)
where the Γs are gamma-functions.

To work out the emission spectrum from, say, a slab of thickness l, we write down
the transfer equation

dIν

dx
= −χνIν +

J(ν)

4π
. (43)

The solution is

Iν =
J(ν)

4πχν
[1− e−χνl]. (44)
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Synchrotron Self-absorption

If the source is optically thin, χ(ν)l � 1, we obtain Iν = J(ν)l/4π.

If the source is optically thick, χ(ν)l � 1, we find

Iν =
J(ν)

4πχν
. (45)

The quantity J(ν)/4πχν is often referred to as the source function. Substituting for
the absorption coefficient χ(ν) from (170) and for Jν from (166), we find

Iν = (constant)
meν5/2

B1/2
. (46)

This is the same dependence as was found from the above physical arguments.

VLBI observations show that the angular sizes of many of the synchrotron
self-absorbed sources have angular sizes θ ≈ 10−3 arcsec. For 1 Jy radio sources,
the corresponding brightness temperatures are

Tb =
λ2

2kB

Sν

Ω
∼ 1011 K. (47)

This is direct evidence for relativistic electrons within the source regions.
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Distortions of Injection Spectra of the Electrons

In the optically thin regime of sources of synchrotron radiation, spectral breaks or
cut-offs are often observed. In addition, different regions within individual sources
may display spectral index variations. Both of these phenomena can be attributed to
the effects of ageing of the spectrum of the electrons within the source regions and
so provide useful information about time-scales. The lifetimes τ of the electrons in
the source regions are

τ =
E

(dE/dt)
=

mec2

4
3σTcUmagγ

. (48)

For typical extended powerful radio sources, γ ∼ 103 and B ∼ 10−9 T and so the
lifetimes of the electrons are expected to be τ ≤ 107 − 108 years. In the case of
X-ray sources, for example, the diffuse X-ray emission from the Crab Nebula and the
jet of M87, the energies of the electrons are very much greater, the inferred
magnetic field strengths are greater and so the relativistic electrons have
correspondingly shorter lifetimes. Since the lifetimes of the electrons are shorter
than the light travel time across the sources, the electrons must be continuously
accelerated within these sources.
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The Diffusion Loss Equation

To obtain a quantitative description of the resulting distortions of synchrotron
radiation spectra, it is convenient to introduce the diffusion-loss equation for the
electrons (HEA2, Chap. 19). If we write the loss rate of the electrons as

−
(
dE

dt

)
= b(E), (49)

the diffusion-loss equation is

∂N(E)

∂t
= D∇2N(E) +

∂

∂E
[b(E)N(E)] + Q(E, t), (50)

where D is a scalar diffusion coefficient and Q(E) is a source term which describes
the rate of injection of electrons and their injection spectra into the source region.
We can obtain some useful results by inspection of a few special steady-state
solutions.
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Steady-state Electron Spectrum with Losses

Suppose, first of all, that there is an infinite, uniform distribution of sources, each
injecting high energy electrons with an injection spectrum Q(E) = κE−p. Then,
diffusion is not important and the diffusion-loss equation reduces to

d

dE
[b(E)N(E)] = −Q(E) ;

∫
d[b(E)N(E)] = −

∫
Q(E) dE. (51)

We assume N(E) → 0 as E →∞ and hence integrating we find

N(E) =
κE−(p−1)

(p− 1)b(E)
. (52)

We now write down b(E) for high energy electrons under interstellar conditions

b(E) = −
(
dE

dt

)
= A1

(
ln

E

mec2
+ 19.8

)
+ A2E + A3E2. (53)

The first term on the right-hand side, containing the constant A1, describes
ionisation losses and depends only weakly upon energy; the second term,
containing A2, represents bremsstrahlung and adiabatic losses and the last term,
containing A3, describes inverse Compton and synchrotron losses.
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Steady-state Electron Spectrum with Losses

This analysis enables us to understand the effect of continuous energy losses upon
the initial spectrum of the high energy electrons. Thus, from (52),

• if ionisation losses dominate, N(E) ∝ E−(p−1), that is, the energy spectrum is
flatter by one power of E;

• if bremsstrahlung or adiabatic losses dominate, N(E) ∝ E−p, that is, the
spectrum is unchanged;

• if inverse Compton or synchrotron losses dominate, N(E) ∝ E−(p+1), that is,
the spectrum is steeper by one power of E.
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Steady-state Electron Spectrum with Losses

These are also the equilibrium spectra expected whenever the continuous injection
of electrons takes place over a time-scale longer than the lifetimes of the individual
electrons involved. For example, if we inject electrons continuously with a spectrum
E−p into a source component for a time t and synchrotron radiation is the only
important loss process, an electron of energy Es loses all its energy in a time τ such
that −(dE/dt)τ = Es. For lower energies than Es, the electrons do not lose a
significant fraction of their energy and therefore the spectrum is the same as the
injection spectrum, N(E) ∝ E−p. For energies greater than Es, the particles have
lifetimes less than t and we only observe those produced during the previous
synchrotron lifetime τs of the particles of energy E, that is, τs ∝ 1/E. Therefore the
spectrum of the electrons is one power of E steeper, N(E) ∝ E−(p+1), in
agreement with the analysis proceeding from the steady-state solution of the
diffusion-loss equation.
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Steady-state Electron Spectrum with Losses

There are two useful analytic solutions for the
electron energy distribution under continuous
energy losses due to synchrotron radiation and
inverse Compton scattering. In the first case, it is
assumed that there is continuous injection of
electrons with a power-law energy spectrum
Q(E) = κE−p for a time t0. If we write the loss
rate of the electrons in the form b(E) = aE2, the
energy spectrum after time t0 has the form

N(E) =
κE−(p+1)

a(p− 1)
[1−(1−aEt)p−1] if aEt0 ≤ 1;

(54)

N(E) =
κE−(p+1)

a(p− 1)
if aEt0 > 1. (55)

This form of spectrum agrees with the physical
arguments given in the last paragraph.
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No Injection of Electrons

A second useful case is that of the injection of
electrons with a power-law energy spectrum at
t = 0 with no subsequent injection of electrons. We
can then write Q(E) = κE−pδ(t), where δ(t) is
the Dirac delta function. It is straightforward to show
that the solution of the diffusion-loss equation,
ignoring the diffusion term, is

N(E) = κE−p(1− aEt)p−2. (56)

Thus, after time t, there are no electrons with
energies greater than (at)−1. Notice that, if p > 2,
the spectrum steepens smoothly to zero at
E = (at)−1; if p < 2, there is a cusp in the energy
spectrum at E = (at)−1. The number of electrons,
however, remains finite and constant.
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Example of Use of Diffusion-Loss Equation

Let us look briefly at the adiabatic loss problem which pervades much of the
astrophysics of clouds of relativistic plasma. The concern is that, if high energy
particles are accelerated in a supernova explosion, for example, they lose all their
energy adiabatically the expansion.

The relativistic gas exerts a pressure on its surroundings and consequently suffers
adiabatic losses. For a relativistic particle, the energy decreases with increasing
radius as E ∝ r−1. This also applies to the total relativistic particle energy and thus,
if the total energy is W0 at radius r0, when the remnant expands to radius r, the
internal energy of the relativistic gas is only (r0/r)W0.

If the expansion were purely adiabatic and the magnetic field strength decreased as
B ∝ r−2, as is expected if magnetic flux freezing is applicable, the radio luminosity
should decrease rapidly as the remnant expands.
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The Adiabatic-Loss Problem

The diffusion-loss equation reduces to

dN(E)

dt
=

∂

∂E
[b(E)N(E)]

where b(E) = (1/r)(dr/dt)E. Note that N(E) now refers to all the particles in the
remnant rather than the number per unit volume. Therefore, during the expansion,
we can write N(E) = V κ(r)E−p since the spectral index does not change under
adiabatic losses. If N(E) were the number per unit volume, we would have to add
the term −N∇ · v to the right hand side. Therefore, assuming N(E) = κE−p,

dN(E)

dt
=

∂

∂E

(
1

r

dr

dt
κE−(p−1)

)
dN(E)

N(E)
= −(p− 1)

dr

r
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The Adiabatic-Loss Problem

N(E, r)

N(E, r0)
=

(
r

r0

)−(p−1)

, that is,
κ(r)

κ(r0)
=

(
r

r0

)−(p−1)

We can now work out how the synchrotron radio luminosity varies with radius
because

Iν = A(α)κ(R)B(1+α)ν−α

and hence

Iν(r) ∝ r−(p−1)r−2(1+α) .

p = 2α + 1 and therefore

Iν(r) ∝ r−2(2α+1) = r−2p .

Thus, if sources expand adiabatically, the synchrotron emissivity decreases very
rapidly with radius. There needs to be a way of recovering the kinetic energy of the
expanding source.
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The Energetics of Sources of Synchrotron Radiation

An important calculation involving sources of synchrotron radiation is the estimation
of the minimum energy requirements in relativistic electrons and magnetic fields to
account for the observed synchrotron emission. Suppose a source has luminosity
Lν at frequency ν and its volume is V . The spectrum of the radiation is of power-law
form, Lν ∝ ν−α. The following arguments can be applied to the synchrotron
radiation emitted by the source at any frequency, be it radio, optical or X-ray
wavelengths. The luminosity can be related to the energy spectrum of the
ultrarelativistic electrons and the magnetic field B present in the source through the
expression (38) for synchrotron radiation

Lν = A(α)V κB1+αν−α, (57)

where the electron energy spectrum per unit volume is N(E) dE = κE−p

dE, p = 2α + 1 and A(α) is a constant which depends only weakly on the
spectral index α. Writing the energy density in relativistic electrons as εe, the total
energy present in the source is

Wtotal = V εe + V
B2

2µ0
= V

∫
κEN(E) dE + V

B2

2µ0
. (58)
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The Minimum Energy Requirements

The luminosity of the source Lν determines only the product V κB1+α. If V is
assumed to be known, the luminosity may either be produced by a large flux of
relativistic electrons in a weak magnetic field, or vice versa. There is no way of
deciding which combination of εe and B is appropriate from observations of Lν.
Between the extremes of dominant magnetic field and dominant particle energy,
there is a minimum total energy requirement.

We need to account for the energy which might be present in the form of relativistic
protons. In our own Galaxy, there seems to be about 100 times as much energy in
relativistic protons as there is in electrons, whereas in the Crab Nebula, the energy
in relativistic protons cannot be much greater than the energy in the electrons from
dynamical arguments. It is therefore assumed that the protons have energy β times
that of the electrons, that is,

εprotons = βεe , εtotal = (1 + β)εe = ηεe. (59)

We therefore write

Wtotal = ηV
∫ Emax

Emin

κEN(E) dE + V
B2

2µ0
. (60)
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The Minimum Energy Requirements

The energy requirements as expressed in (60) depend upon the unknown quantities
κ and B, but they are related through (57) for the observed luminosity of the source
Lν. We also require the relation between the frequency of emission of an
ultrarelativistic electron of energy E = γmec2 � mec2 in a magnetic field of
strength B. We use the result that the maximum intensity of synchrotron radiation
occurs at a frequency

ν = νmax = 0.29νc = 0.29 3
2γ2νg = CE2B , (61)

where νg is the non-relativistic gyrofrequency and C = 1.22× 1010/(mec2)2.
Therefore, the relevant range of electron energies in the integral (60) is related to
the range of observable frequencies through

Emax =
(

νmax

CB

)1/2
Emin =

(
νmin

CB

)1/2
. (62)

νmax and νmin are the maximum and minimum frequencies for which the spectrum
is known or the range of frequencies relevant to the problem at hand.
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The Minimum Energy Requirements

Then

Wparticles = ηV
∫ Emax

Emin

EκE−p dE =
ηV κ

(p− 2)
(CB)(p−2)/2

[
ν
(2−p)/2
min − ν

(2−p)/2
max

]
.

Substituting for κ in terms of Lν and B from (57),

Wparticles =
ηV

(p− 2)

[
Lν

A(ν)V B1+αν−α

]
(CB)(p−2)/2[ν

(2−p)/2
min − ν

(2−p)/2
max ].

(63)

Preserving only the essential dependences,

Wparticles = G(α)ηLνB−3/2, (64)

where G(α) is a constant which depends weakly on α, νmax and νmin if α ≈ 1.
Therefore

Wtotal = G(α)ηLνB−3/2 + V
B2

2µ0
. (65)
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Minimum Energy Requirements

The diagram shows the variation of the
energies in particles and magnetic field as a
function of B. There is a minimum total
energy,

Bmin =

[
3µ0

2

G(α)ηLν

V

]2/7

. (66)

This magnetic field strength Bmin

corresponds to approximate equality of the
energies in the relativistic particles and
magnetic field. Substituting Bmin into (64),
we find

Wmag = V
B2

min

2µ0
= 3

4Wparticles (67)

Thus, the condition for minimum energy
requirements corresponds closely to the
condition that there are equal energies in the
relativistic particles and the magnetic field.
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Equipartition of Energy?
This condition is often referred to as equipartition. The minimum total energy is

Wtotal(min) =
7

6µ0
V 3/7

[
3µ0

2
G(α)ηLν

]4/7
. (68)

This is the minimum total energy needed to account for the observed luminosity of
the source. These results are frequently used in the study of the synchrotron
radiation from radio, optical and X-ray sources but their limitations should be
appreciated.

• There is no physical justification for the source components being close to
equipartition. It has been conjectured that the magnetic field in the source
components may be stretched and tangled by motions in the plasma and so
there might be rough equipartition between the magnetic energy density and
the energy density in turbulent motions. The turbulent motions might also be
responsible for accelerating the high energy particles and these particles might
come into equipartition with the turbulent energy density if the acceleration
mechanism were very efficient. In this way, it is possible that there might be a
physical justification for the source components being close to equipartition, but
this is no more than a conjecture.
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Equipartition of Energy?

• The amount of energy present in the source is sensitive to the value of η, that is,
the amount of energy present in the form of relativistic protons and nuclei.

• The total amount of energy in relativistic particles is dependent upon the limits
assumed to the energy spectrum of the particles. If α = 1, we need only
consider the dependence upon νmin, Wmin ∝ ν−0.5

min . However, there might be
large fluxes of low energy relativistic electrons present in the source
components with a quite different energy spectrum and we would have no way
of knowing that they are present from the radio observations.

• The energy requirements depend upon the volume of the source. The
calculation has assumed that the particles and magnetic field fill the source
volume uniformly. The emitting regions might occupy only a small fraction of the
apparent volume of the source, for example, if the synchrotron emission
originated in filaments or subcomponents within the overall volume V . Then,
the volume which should be used in the expressions (201) and (203) should be
smaller than V . Often, a filling factor f is used to describe the fraction of the
volume occupied by radio emitting material. The energy requirements are
reduced if f is small.
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Equipartition of Energy?

• On the other hand, we can obtain a firm lower limit to the energy density within
the source components since

Umin =
Wtotal(min)

V
=

7

6µ0
V −4/7

[
3µ0

2
G(α)ηLν

]4/7
. (69)

For dynamical purposes, the energy density is more important than the total
energy since it is directly related to the pressure within the source components
p = (γ − 1)U where γ is the ratio of specific heats. In the case of an
ultrarelativistic gas, γ = 4/3 and so p = 1

3U as usual.

Therefore, the values of the magnetic field strength and minimum energy which
come out of these arguments should be considered only order of magnitude
estimates. If the source components depart radically from the equipartition values,
the energy requirements are increased and this can pose problems for some of the
most luminous sources.
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Equipartition of Energy?

It is cumbersome to have to go through the procedure of working out G(α) to
estimate the minimum energy requirements and magnetic field strengths. A
simplified calculation can be performed as follows. If we assume that the spectral
index α = 0.75, we can neglect the upper limit νmax in comparison with νmin in
evaluating G(α). Then, if we know the luminosity L(ν) at a certain frequency ν, we
obtain a lower limit to the energy requirements if we set ν = νmin. Making these
simplifications, we find that the minimum energy requirement is:

Wmin ≈ 3.0× 106 η4/7V 3/7ν2/7L
4/7
ν J, (70)

where the volume of the source V is measured in m3, the luminosity L(ν) in W
Hz−1 and the frequency ν in Hz. In the same units, the minimum magnetic field
strength is:

Bmin = 1.8
(

ηLν

V

)2/7
ν1/7 T. (71)
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Examples

A good example is provided by the radio source Cygnus A. On the large scale, the
source consists of two components roughly 100 kpc in diameter. The source had
luminosity roughly 8× 1028 W Hz−1 at 178 MHz. The minimum total energy is
2× 1052η4/7 J, corresponding to a rest mass energy of 3× 105η4/7 M�. Thus, a
huge amount of mass has to be converted into relativistic particle energy and
ejected from the nucleus of the galaxy into enormous radio lobes.

Performing the same calculation for the supernova remnant Cassiopeia A, the
magnetic flux density corresponding to the minimum energy requirements is
B = 10η2/7 nT and the minimum total energy is Wmin = 2× 1041η4/7 J. This
can be compared with the kinetic energy of the filaments which amounts to about
2× 1044 J.

52


