
Inverse Compton Scattering

Comptonisation is a vast subject. Inverse Compton scattering involves the scattering
of low energy photons to high energies by ultrarelativistic electrons so that the
photons gain and the electrons lose energy. The process is called inverse because
the electrons lose energy rather than the photons, the opposite of the standard
Compton effect. We will treat the case in which the energy of the photon in the
centre of momentum frame of the interaction is much less that mec2, and
consequently the Thomson scattering cross-section can be used to describe the
probability of scattering.

Many of the most important results can be worked out using simple physical
arguments, as for example in Blumenthal and Gould (1970) and Rybicki and
Lightman (1979).
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Inverse Compton Scattering

Consider a collision between a photon and a relativistic electron as seen in the
laboratory frame of reference S and in the rest frame of the electron S′. Since
h̄ω′ � mec2 in S′, the centre of momentum frame is very closely that of the
relativistic electron. If the energy of the photon is h̄ω and the angle of incidence θ in
S, its energy in the frame S′ is

h̄ω′ = γ h̄ω[1 + (v/c) cos θ] (1)

according to the standard relativistic Doppler shift formula.
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Inverse Compton Scattering

Similarly, the angle of incidence θ′ in the frame S′ is related to θ by the formulae

sin θ′ =
sin θ

γ[1 + (v/c) cos θ]
; cos θ′ =

cos θ + v/c

1 + (v/c) cos θ
. (2)

Now, provided h̄ω′ � mec2, the Compton interaction in the rest frame of the
electron is simply Thomson scattering and hence the energy loss rate of the
electron in S′ is just the rate at which energy is reradiated by the electron.

According to the analysis of Thomson scattering (22, Lecture 1), the loss rate is

−(dE/dt)′ = σTcU ′rad, (3)

where Urad is the energy density of radiation in the rest frame of the electron. As
discussed in that section, it is of no importance whether or not the radiation is
isotropic. The free electron oscillates in response to any incident radiation field. Our
strategy is therefore to work out U ′rad in the frame of the electron S′ and then to use
(3) to work out (dE/dt)′. Because dE/dt is an invariant between inertial frames,
this is also the loss rate (dE/dt) in the observer’s frame S.
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Working out U ′rad in S′

In S, the electron moves
from x1 to x2 in the time
interval t1 to t2. These are
transformed into S′ by the
standard Lorentz
transformation

Suppose the number density of photons in a
beam of radiation incident at angle θ to the
x-axis is N . Then, the energy density of these
photons in S is N h̄ω. The flux density of
photons incident upon an electron stationary in
S is Uradc = N h̄ωc.
Now let us work out the flux density of this beam
in the frame of reference of the electron S′. We
need two things, the energy of each photon in S′

and the rate of arrival of these photons at the
electron in S′. The first of these is given by (3).
The second factor requires a little bit of care,
although the answer is obvious in the end. The
beam of photons incident at angle θ in S arrives
at an angle θ′ in S′ according to the aberration
formulae (2).
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Working out U ′rad in S′

We are interested in the rate of arrival of photons at the origin of S′ and so let us
consider two photons which arrive there at times t′1 and t′2. The coordinates of
these events in S are

[x1,0,0, t1] = [γV t′1,0,0, γt′1] and [x2,0,0, t2] = [γV t′2,0,0, γt′2] (4)

respectively. This calculation makes the important point that the photons in the
beam are propagated along parallel but separate trajectories in S as illustrated by
Fig. 30. From the geometry of the figure, it is apparent that the time difference when
the photons arrive at a plane perpendicular to their direction of propagation in S is

∆t = t2 +
(x2 − x1)

c
cos θ − t1 = (t′2 − t′1)γ[1 + (v/c) cos θ], (5)

that is, the time interval between the arrival of photons from the direction θ is shorter
by a factor γ[1 + (v/c) cos θ] in S′ than it is in S.
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Working out U ′rad in S′

Thus, the rate of arrival of photons, and correspondingly their number density, is
greater by this factor γ[1 + (v/c) cos θ] in S′ as compared with S. This is exactly
the same factor by which the energy of the photon has increased (3). On reflection,
we should not be surprised by this result because these are two different aspects of
the same relativistic transformation between the frames S and S′, in one case the
frequency interval and, in the other, the time interval.

Thus, as observed in S′, the energy density of the beam is therefore

U ′rad = [γ(1 + (v/c) cos θ)]2 Urad. (6)

Now, this energy density is associated with the photons incident at angle θ in the
frame S and consequently arrives within solid angle 2π sin θ dθ in S. We assume
that the radiation field in S is isotropic and therefore we can now work out the total
energy density seen by the electron in S′ by integrating over solid angle in S, that is,

U ′rad = Urad

∫ π

0
γ2[1 + (v/c) cos θ]2 1

2 sin θ dθ. (7)
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The Inverse Compton Energy Loss Rate

Integrating, we find

U ′rad = 4
3Urad(γ

2 − 1
4). (8)

Therefore, substituting into (3), we find

(dE/dt)′ = (dE/dt) = 4
3σTcUrad(γ

2 − 1
4). (9)

Now, this is the energy gained by the photon field due to the scattering of the low
energy photons. We have therefore to subtract the energy of these photons to find
the total energy gain to the photon field in S. The rate at which energy is removed
from the low energy photon field is σTcUrad and therefore, subtracting, we find

dE/dt = 4
3σTcUrad(γ

2 − 1
4)− σTcUrad = 4

3σTcUrad(γ
2 − 1). (10)

We now use the identity (γ2 − 1) = (v2/c2)γ2 to write the loss rate in its final form

dE/dt = 4
3σTcUrad

(
v2

c2

)
γ2. (11)
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Synchrotron Radiation and Inverse Compton Losses

This is the remarkably elegant result we have been seeking. It is exact so long as
γ h̄ω � mec2.

Notice the remarkable similarity between the expressions for the loss rates by
synchrotron radiation (15) and by inverse Compton scattering (11), even down to the
factor of 4

3 in front of the two expressions.

−
(
dE

dt

)
IC

= 4
3σTcUrad

(
v2

c2

)
γ2 −

(
dE

dt

)
sync

= 4
3σTcUmag

(
v

c

)2
γ2 (12)

This is not an accident. The reason for the similarity is that, in both cases, the
electron is accelerated by the electric field which it observes in its instantaneous
rest-frame. The electron does not really care about the origin of the electric field. In
the case of synchrotron radiation, the constant accelerating electric field is
associated with the motion of the electron through the magnetic field B,
E′ = v ×B, and, in the case of inverse Compton scattering, it is the sum of all the
electric fields of the incident waves. Notice that, in the latter case, the fields of the
waves add incoherently and it is the sum of the squares of the electric field strengths
of the waves which appears in the formulae.
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The Spectrum of Inverse Compton Radiation

The next calculation is the determination of the spectrum of the scattered radiation.
This can be found by performing two successive Lorentz transformations, first
transforming the photon distribution into the frame S′ and then transforming the
scattered radiation back into the laboratory frame of reference S. This is not a trivial
calculation, but the exact result is given by Blumenthal and Gould (1970) for an
incident isotropic photon field at a single frequency ν0. They show that the spectral
emissivity I(ν) may be written

I(ν) dν =
3σTc

16γ4

N(ν0)

ν2
0

ν

[
2ν ln

(
ν

4γ2ν0

)
+ ν + 4γ2ν0 −

ν2

2γ2ν0

]
dν, (13)

where the radiation field is assumed to be monochromatic with frequency ν0; N(ν0)

is the number density of photons. At low frequencies, the term in square brackets in
(13) is a constant and hence the scattered radiation has the form I(ν) ∝ ν.
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The Spectrum of Inverse Compton Radiation

It is an easy calculation to show that the
maximum energy which the photon can acquire
corresponds to a head-on collision in which the
photon is sent back along its original path. The
maximum energy of the photon is

( h̄ω)max = h̄ωγ2(1+v/c)2 ≈ 4γ2 h̄ω0. (14)

Another interesting result comes out of the
formula for the total energy loss rate of the
electron (11). The number of photons scattered
per unit time is σTcUrad/h̄ω0 and hence the
average energy of the scattered photons is

h̄ω = 4
3γ2(v/c)2 h̄ω0 ≈ 4

3γ2 h̄ω0. (15)

This result gives substance to the hand-waving argument that the photon gains one
factor of γ in transforming into S′ and then gains another on transforming back to S.
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Inverse Compton Radiation

The general result that the frequency of the scattered photons is ν ≈ γ2ν0 is of
profound importance in high energy astrophysics. We know that there are electrons
with Lorentz factors γ ∼ 100− 1000 in various types of astronomical source and
consequently they scatter any low energy photons to very much higher energies.
Consider the scattering of radio, infrared and optical photons scattered by electrons
with γ = 1000.

Waveband Frequency (Hz) Scattered Frequency (Hz)
ν0 and Waveband

Radio 109 1015 = UV
Far-infrared 3× 1012 3× 1018 = X-rays

Optical 4× 1014 4× 1021 ≡ 1.6MeV = γ-rays

Thus, inverse Compton scattering is a means of creating very high energy photons
indeed. It also becomes an inevitable drain of energy for high energy electrons
whenever they pass through a region in which there is a large energy density of
photons.
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Emission of a Distribution of Electron Energies

When these formulae are used in astrophysical calculations, it is necessary to
integrate over both the spectrum of the incident radiation and the spectrum of the
relativistic electrons. The enthusiast is urged to consult the excellent review paper
by Blumenthal and Gould (1970). Some of the results are, however, immediately
apparent from the close analogy between the inverse Compton scattering and
synchrotron radiation processes. For example,the spectrum of the inverse Compton
scattering of photons of energy hν by a power-law distribution of electron energies

dN ∝ E−p dE. (16)

results in an intensity spectrum of the scattered radiation of the form

I(ν) ∝ ν−(p−1)/2, (17)

because of the γ2 dependence of the energy loss rate by inverse Compton
scattering and the fact that the frequency of the scattered radiation is ν ≈ γ2ν0.
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Application to Double Radio Sources

The ratio of the total amount of energy liberated by synchrotron radiation and by
inverse Compton scattering by the same distribution of electrons is

(dE/dt)sync

(dE/dt)IC
=

∫
Iν dν (radio)∫

IX dνX (X-ray)
=

B2/2µ0

Urad
, (18)

where Urad is the energy density of radiation and B the magnetic flux density in the
source region. Thus, if we measure the radio and X-ray flux densities from a source
region and we know Urad, we can find the magnetic flux density in the source. This
type of phenomenon has been sought for in the hot spots and the extended
structures of double radio sources. In the latter case, it is likely that the dominant
source of low energy photons is the Cosmic Microwave Background Radiation.
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Cygnus A

Radio Map from VLA Chandra X-ray Map

The hot-spots of Cygnus A is a good example of this. According to Wilson, Young
and Shopbell (2002), if the X-ray hot-spots are identified with inverse Compton
scattering of the radio synchrotron emission within the lobes (Synchrotron-self
Compton Radiation - see later), the magnetic field strength is 1.5× 10−4 G. This
figure is close to the equipartition value of the magnetic field strengths
2.5− 2.8× 10−4 G, assuming η = 0. It is inferred that the relativistic plasma may
well be an electron-positron plasma. Similar results are found in hot spots in other
double radio sources.
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The Maximum Lifetimes of High Energy Electrons

An important piece of astrophysics involving the Cosmic Microwave Background
Radiation is that relativistic electrons can never escape from it since it permeates all
space. The energy density of the Cosmic Microwave Background Radiation is
U0 = aT4 = 2.6× 105 eV m−3. Therefore, the maximum lifetime τ of any electron
against inverse Compton Scattering is

τ =
E

|dE/dt|
=

E
4
3σTcγ2U0

=
2.3× 1012

γ
years (19)

For example, we observe 100 GeV electrons at the top of the atmosphere and so
they must have lifetimes τ ≤ 107 years.
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Synchro-Compton Radiation
and the Inverse Compton Catastrophe

Inverse Compton scattering is likely to be an important source of X-rays and γ-rays,
for example, in the intense extragalactic γ-ray sources. Wherever there are large
number densities of soft photons, the presence of ultrarelativistic electrons must
result in the production of high energy photons, X-rays and γ-rays. The case of
special interest in this chapter is that in which the same relativistic electrons which
are the source of the soft photons are also responsible for scattering these photons
to X-ray and γ-ray energies – this is the process known as synchro-Compton
Radiation. One case of special importance is that in which the number density of
low energy photons is so great that most of the energy of the electrons is lost by
synchro-Compton radiation rather then by synchotron radiation. This line of
reasoning leads to what is known as the inverse Compton catastrophe.
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Synchro-Compton Catastrophe
(for radio astronomers)

The ratio, η, of the rates of loss of energy of an ultrarelativistic electron by inverse
Compton and synchrotron radiation in the presence of a photon energy density Urad

and a magnetic field of magnetic flux density B is

η =
(dE/dt)IC

(dE/dt)sync
=

Uphoton

B2/2µ0
. (20)

The synchro-Compton catastrophe occurs if this ratio is greater than 1. In that case,
low energy photons, say, radio photons produced by synchrotron radiation, are
scattered to X-ray energies by the same flux of relativistic electrons. Since η is
greater than 1, the energy density of the X-rays is greater than that of the radio
photons and so the electrons suffer an even greater rate of loss of energy by
scattering these X-rays to γ-ray energies. In turn, these γ-rays have a greater
energy density than the X-rays . . . and so on. It can be seen that as soon as the
ratio (20) becomes greater than one, all the energy of the electrons is lost at the
very highest energies and so the radio source should instead be a very powerful
source of X-rays and γ-rays. Note that for the hot spots of Cygnus A, η � 1.
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Synchro-Compton Radiation

Let us study the first stage of the process for the case of compact synchrotron
self-absorbed radio sources. We need the energy density of radiation within a
synchrotron self-absorbed radio source. As we have shown shown, the flux density
of such a source is

Sν =
2kTe

λ2
Ω where Ω ≈ θ2 =

r2

D2
. (21)

Ω is the solid angle subtended by the source, r is the size of the source and D its
distance. For a synchrotron self-absorbed source, the electron temperature of the
relativistic electrons is the same as its brightness temperature Te = Tb. The radio
luminosity of the source is

Lν = 4πD2Sν =
8πk

λ2
r2. (22)

Therefore, the energy density of the radio emission Uphoton is

Uphoton ∼
Lνν

4πr2c
=

2kTeν

λ2c
. (23)
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Synchro-Compton Radiation

Lν is the luminosity per unit bandwidth, and so the bolometric luminosity is roughly
νLν. Therefore,

η =

(
2kTeν

λ2c

)
(

B2

2µ0

) =
4kTeνµ0

λ2cB2
. (24)

We can now use the theory of self-absorbed radio sources to express the magnetic
flux density B in terms of observables. Repeating the calculations carried out in
Sect. 6.8,

νg = ν/γ2 and 3kTb = 3kTe = γmec
2, (25)

where Tb is the brightness temperature of the source. Reorganising these relations,
we find

B =
2πme

e

(
mec2

3kTe

)2

ν. (26)
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The Synchro-Compton Catastrophe

Therefore, the ratio of the loss rates, η, is

η =
(dE/dt)IC

(dE/dt)sync
=

(
81e2µ0k5

π2m6
ec11

)
νT5

e . (27)

This is the key result. It can be seen that the ratio of the loss rates depends very
strongly upon the brightness temperature of the radio source. Putting in the values
of the constants, we find that the critical brightness temperature is

Tb = Te = 1012 ν
−1/5
9 K, (28)

where ν9 is the frequency at which the brightness temperature is measured in units
of 109 K, that is, in GHz. Thus, according to this calculation, no compact radio
source should have brightness temperature greater than TB ≈ 1012 K, if the
emission is incoherent synchrotron radiation.
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VLBI Observations of Compact Sources

The most compact sources, which have been studied by VLBI at centimetre
wavelengths, have brightness temperatures which are less than the
synchro-Compton limit, typically, the values found being TB ≈ 1011 K, which is
reassuring. Notice that this is direct evidence that the radiation is the emission of
relativistic electrons since the temperature of the emitting electrons must be at least
1011 K.

This is not, however, the whole story. If the time-scales of variability τ of the
compact sources are used to estimate their physical sizes, l ∼ cτ , the source
regions must be considerably smaller than those inferred from VLBI, and then
values of TB exceeding 1011 K are found. It is likely that relativistic beaming is the
cause of this discrepancy, a topic which we take up in a moment.
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Band and Grindley (1985)

Examples of the expected spectra of sources of
synchro-Compton radiation have been evaluated
by Band and Grindlay (1985). They take into
account the transfer of radiation within the
self-absorbed source. The homogeneous
source (top panel) has the standard form of
spectrum, namely, a power-law distribution in
the optically thin spectral region Lν ∝ ν−α,
while, in the optically thick region, the spectrum
has the form Lν ∝ ν5/2. In the case of the
inhomogeneous source (lower panel), the
magnetic field strength and number density of
relativistic electrons decrease outwards as
power-laws, resulting in a much broader
‘synchrotron-peak’.
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Band and Grindley (1985)

Of particular importance is that they take
account of the fact that, at relativistic
energies hν ≥ 0.5 MeV, the
Klein-Nishina cross-section rather than
the Thomson cross-section should be
used for photon-electron scattering. In
the ultrarelativistic limit, the
cross-section is

σKN =
π2r2e
hν

(ln 2hν + 1
2), (29)

and so the cross-section decreases as
(hν)−1 at high energies. Consequently,
higher order scatterings result in much
reduced luminosities as compared with
the non-relativistic calculation.
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Ultra-High Energy γ-ray Sources

In the extreme γ-ray sources Markarian 421 and 501, it is very likely that some form
of inverse Compton radiation is occurring, quite possible via the Synchro-Compton
mechanism. These γ-ray sources are quite enormously luminous and variable. It is
therefore likely that relativistic motions have to be involved to explain their
luminosities and variability.
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γ-ray Processes and Photon-Photon Interactions

The processes of synchrotron radiation, inverse Compton scattering and relativistic
bremsstrahlung are effective means of creating high-energy γ-ray photons, but there
are other mechanisms. One of the most important is the decay of neutral pions
created in collisions between relativistic protons and nuclei of atoms and ions of the
interstellar gas.

p + p → π+, π−, π0. (30)

The charged pions decay into muons and neutrinos

π+ → µ+ + νµ ; π− → µ− + ν̄µ (31)

with a mean lifetime of 2.551× 10−8 s. The charged muons then decay with mean
lifetime of 2.2001× 10−6 s

µ+ → e+ + νe + ν̄µ ; µ− → e− + ν̄e + νµ. (32)
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Neutral Pions

In contrast, the neutral pions decay into pairs of γ-rays, π0 → γ + γ, in only
1.78× 10−16 s. The cross-section for this process is σpp→γγ ≈ 10−30 m2 and the
emitted spectrum of γ-rays has a broad maximum centred on a γ-ray energy of
about 70 MeV (see HEA2, Sect. 20.1). This is the process responsible for the
continuum emission of the interstellar gas at energies ε ≥ 100 MeV. A simple
calculation shows that, if the mean number density of the interstellar gas is
N ∼ 106 m−3 and the average energy density of cosmic ray protons with energies
greater than 1 GeV about 106 eV m−3, the γ-ray luminosity of the disc of our
Galaxy is about 1032 W, as observed.
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Electron-Positron Annihilation

Electron-positron annihilation can proceed in two ways. In the first case, the
electrons and positrons annihilate at rest or in flight through the interaction
e+ + e− → 2γ. When emitted at rest, the photons both have energy 0.511 MeV.
When the particles annihilate ‘in flight’, meaning that they suffer a fast collision,
there is a dispersion in the photon energies. It is a pleasant exercise in relativity to
show that, if the positron is moving with velocity v with corresponding Lorentz factor
γ, the centre of momentum frame of the collision has velocity V = γv(1 + γ) and
that the energies of the pair of photons ejected in the direction of the line of flight of
the positron and in the backward direction are

E =
mec2(1 + γ)

2

(
1±

V

c

)
. (33)

From this result, it can be seen that the photon which moves off in the direction of the
incoming positron carries away most of the energy of the positron and that there is a
lower limit to the energy of the photon ejected in the opposite direction of mec2/2.
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Electron-Positron Annihilation

If the velocity of the positron is small, positronium atoms, that is, bound states
consisting of an electron and a positron, can form by radiative recombination: 25%

of the positronium atoms form in the singlet 1S0 state and 75% of them in the triplet
3S1 state. The modes of decay from these states are different. The singlet 1S0

state has a lifetime of 1.25× 1010 s and the atom decays into two γ-rays, each with
energy 0.511 MeV. The majority triplet 3S1 states have a mean lifetime of
1.5× 10−7 s and three γ-rays are emitted, the maximum energy being 0.511 MeV
in the centre of momentum frame. In this case, the decay of positronium results in a
continuum spectrum to the low energy side of the 0.511 MeV line. If the positronium
is formed from positrons and electrons with significant velocity dispersion, the line at
0.511 MeV is broadened, both because of the velocities of the particles and
because of the low energy wing due to continuum three-photon emission. This is a
useful diagnostic tool in understanding the origin of the 0.511 MeV line. If the
annihilations take place in a neutral medium with particle density less than
1021m−3, positronium atoms are formed. On the other hand, if the positrons collide
in a gas at temperature greater than about 106 K, the annihilation takes place
directly without the formation of positronium.
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Electron-Positron Annihilation

The cross-section for electron-positron annihilation in the extreme relativistic limit is

σ =
πr2e
γ

[ln 2γ − 1]. (34)

For thermal electrons and positrons, the cross-section becomes

σ ≈
πr2e
(v/c)

. (35)

Positrons are created in the decay of positively charged pions, π+, which are
created in collisions between cosmic ray protons and nuclei and the interstellar gas,
roughly equal numbers of positive, negative and neutral pions being created. Since
the π0s decay into γ-rays, the flux of interstellar positrons created by this process
can be estimated from the γ-ray luminosity of the interstellar gas. A second process
is the decay of long-lived radioactive isotopes created by nucleosynthesis in
supernova explosions. For example, the β+ decay of 26Al has a mean lifetime of
1.1× 106 years. 26Al is formed in supernova explosions and then ejected into the
interstellar gas where the decay results in a flux of interstellar positrons.
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Photon-Photon collisions

A third process is the creation of electron-positron pairs through photon-photon
collisions, a process of considerable importance in compact γ-ray sources. Let us
work out the threshold energy for this process. If P 1 and P 2 are the momentum
four-vectors of the photons before the collision

P 1 = [ε1/c2, (ε1/c)i1] ; P 2 = [ε2/c2, (ε2/c)i2], (36)

then conservation of four-momentum requires

P 1 + P 2 = P 3 + P 4 (37)

where P 3 and P 4 are the four-vectors of the created particles. To find the threshold
for pair production, we require that the particles be created at rest and therefore

P 3 = [0, me] ; P 4 = [0, me]. (38)

Squaring both sides of (37) and noting that P 1 · P 1 = P 2 · P 2 = 0 and that
P 3 · P 3 = P 4 · P 4 = P 3 · P 4 = m2

ec2,
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Photon-Photon Collisions
P 1 · P 1 + 2P 1 · P 2 + P 2 · P 2 = P 3 · P 3 + 2P 3 · P 4 + P 4 · P 4, (39)

2
(

ε1ε2
c2

−
ε1ε2
c2

cos θ

)
= 4m2

ec2, (40)

ε2 =
2m2

ec4

ε1(1− cos θ)
, (41)

where θ is the angle between the incident directions of the photons. Thus, if
electron-positron pairs are created, the threshold for the process occurs for head-on
collisions, θ = π and hence,

ε2 ≥
m2

ec4

ε1
=

0.26× 1012

ε1
eV, (42)

where ε1 is measured in electron volts. This process thus provides not only a
means for creating electron-positron pairs, but also results an important source of
opacity for very-high-energy γ-rays.

31



Photon-Photon Opacity

The table shows some important examples of combinations of ε1 and ε2. Photons
with energies greater than those in the last column are expected to suffer some
degree of absorption when they traverse regions with high energy densities of
photons with energies listed in the first column.

ε1(eV) ε1(eV)
Microwave Background Radiation 6× 10−4 4× 1014

Starlight 2 1011

X-ray 103 3× 108

The cross-section for this process for head-on colisions in the ultrarelativistic limit is

σ = πr2e
m2

ec4

ε1ε2

[
2 ln

(
2ω

mec2

)
− 1

]
(43)

where ω = (ε1ε2)
1/2 and re is the classical electron radius.
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Photon-Photon Opacity

In the limit h̄ω ≈ mec2, the cross-section is

σ = πr2e

(
1−

m2
ec4

ω2

)1/2

(44)

Thus, near threshold, the cross-section for the interaction γγ → e+e− is

σ ∼ πr2e ∼ 0.2σT. (45)

These cross-sections enable the opacity of the interstellar and intergalactic medium
to be evaluated as well as providing a mechanism by which large fluxes of positrons
could be generated in the vicinity of active galactic nuclei. These results are very
important for the ultra-high γ-ray emission detected by instruments such as the
HESS array in Namibia.
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The Compactness Parameter

These considerations are particularly important in the case of the extremely
luminous and highly variable extragalactic γ-ray sources discovered by the Compton
Gamma-Ray Observatory (CGRO). A key role is played by the compactness
parameter, which arises in considerations of whether or not a γ-ray source is
opaque for γγ collisions because of pair production. Let us carry out a simple
calculation which indicates how the compactness parameter arises. We will carry
out the calculation for the flux of γ-rays at threshold, ε ∼ mec2, for simplicity. The
mean free path of the γ-ray for γγ collisions is λ = (Nγσ)−1 where Nγ is the
number density of photons with energies ε = hν ∼ mec2. If the source has
luminosity Lγ and radius r, the number density of photons within the source region
is

Nγ =
Lγ

4πr2cε
(46)

The condition for the source to be opaque is r ≈ λ, that is,

r ∼
4πr2cmec2

Lνσ
, that is,

Lνσ

4πmec3r
∼ 1 (47)
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The Compactness Parameter

The compactness factor C is defined to be the quantity

C =
Lνσ

4πmec3r
(48)

If the compactness parameter is very much greater than unity, the γ-rays are
destroyed by electron-positron pair production, resulting in a huge flux of electrons
and positrons within the source region. Consequently, the source would no longer
be a hard γ-ray source. Some of the intense γ-ray sources observed by the CGRO
have enormous luminosities, Lγ ∼ 1041 W and vary significantly in intensity over
time-scales of the order of days. Inserting these values into (48), it is found that
C � 1 and so there is a problem in understanding why these sources exist.
Fortunately, all the ultraluminous γ-ray sources are associated with compact radio
sources, which exhibit synchrotron self-absorption and superluminal motions. The
inference is that the luminosities of the γ-ray sources and the time-scales of variation
have been significantly changed by the relativistic motion of the source region.
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Superluminal Motions

The most direct evidence comes from the superluminal
motions observed in the compact radio jets found in VLBI
observations of active galactic nuclei. In the classic case
of the radio core of the radio source 3C 273, one of the
radio components appeared to move a distance of 25
light-years in only three years, corresponding to an
observed transverse velocity of about eight times the
speed of light. This is a common phenomenon in the
compact, variable radio sources which often have spectra
which are synchrotron self-absorbed. The phenomenon
has also been observed in Galactic radio sources, for
example, the source GRS 1915+105, which is a binary
X-ray source in which the compact X-ray source is
associated with a stellar mass black hole (Mirabel and
Rodriguez 1998).
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Superluminal Motions

The observation of compact radio sources with brightness temperatures exceeding
the critical value of 1012 K on the basis of their time variability is evidence that
relativistic beaming may be required to overcome the Inverse Compton catastrophe.

Relativistic beaming is the origin of the very
rapid variations in intensity observed in some of
the most extreme active galactic nuclei, the
BL-Lac objects and blazars. If dimensions are
estimated using the causality relation l = cτ ,
where τ is the time-scale of the variability, the
brightness temperature would exceed the critical
value of 1012 K. A piece of evidence which
supports this view of the BL-Lac phenomenon is
the radio map of the blazar 3C 371. The central
compact radio source is extended in the
direction of a jet leading to one side of a
classical double radio source.
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Relativistic Ballistic Model

The motion of a relativistically
moving source component as
viewed from above.

Let us begin with the simplest, and most
popular, model for superluminal sources, what is
commonly referred to as the relativistic ballistic
model. Let us carry out first the simplest part of
the calculation, the determination of the
kinematics of relativistically moving source
components. The aim is to determine the
observed transverse speed of a component
ejected at some angle θ to the line of sight at a
high velocity v.
The observer is located at a distance D from the
source. The source component is ejected from
the origin O at some time t0 and the signal from
that event sets off towards the observer, where it
arrives at time t = D/c later.
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Relativistic Ballistic Model

After time t1, the component is located at a distance vt1 from the origin and so is
observed at a projected distance vt1 sin θ according to the distant observer. The
light signal bearing this information arrives at the observer at time

t2 = t1 +
D − vt1 cos θ

c
, (49)

since the signals have to travel a slightly shorter distance D − vt1 cos θ to reach the
observer. Therefore, according to the distant observer, the transverse speed of the
component is

v⊥ =
vt1 sin θ

t2 − t
=

vt1 sin θ

t1 −
vt1 cos θ

c

=
v sin θ

1−
v cos θ

c

. (50)

It is a simple sum to show that the maximum observed transverse speed occurs at
an angle cos θ = v/c and is v⊥ = γv, where γ = (1− v2/c2)−1/2 is the Lorentz
factor.
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Relativistic Ballistic Model

Thus, provided the source component moves at a speed close enough to the speed
of light, apparent motions on the sky v⊥ > c can be observed without violating
causality and the postulates of special relativity. For example, if the the source
component were ejected at a speed 0.98c, transverse velocities up to γc = 5c are
perfectly feasible, the case illustrated in the diagram.
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Relativistic Aberration and Time Dilation
Let us consider first a classical undergraduate
problem in relativity:

• A rocket travels towards the Sun at speed
v = 0.8c. Work out the luminosity, colour,
angular size and brightness of the Sun as
observed from the spaceship when it
crosses the orbit of the Earth. It may be
assumed that the Sun radiates like a
uniform disc with a black-body spectrum at
temperature T0.

This problem includes many of the effects found
in relativistic beaming problems.

41



Relativistic Aberration and Time Dilation

Let us work out the separate effects involved in evaluating the intensity of radiation
observed in the moving frame of reference.

• The frequency shift of the radiation The frequency four-vector in the frame of the
Solar System S in Rindler’s notation∗ is

K =
[
ω0

c
,−k0 cos θ,−k0 sin θ,0

]
, (51)

where the light rays are assumed to propagate towards the observer at the orbit
of the Earth, as illustrated in the diagram. The frequency four-vector in the
frame of reference of the spaceship S′ is

K ′ =

[
ω′0
c

,−k′0 cos θ′,−k′0 sin θ′,0

]
. (52)

∗In Rindler’s notation, the components of the four-vectors transform exactly as [ct, x, y, z] according
to the standard Lorentz transformation ct′ = γ(ct − V x/c), x′ = γ(x − V t), y′ = y, z′ = z. The
invariant norm of the four-vector is |R|2 = c2t2 − x2 − y2 − z2.
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Relativistic Aberration and Time Dilation

We use the time transform to relate the ‘time’-components of the four-vectors:

ct′ = γ

(
ct−

V x

c

)
, (53)

and so
ω′

c
= γ

(
ω0

c
+

V k0 cos θ

c

)
. (54)

Since k0 = ω0/c,

ν′ = γν0

(
1 +

V

c
cos θ

)
= κν0. (55)

This is the expression for the ‘blue-shift’ of the frequency of the radiation due to
the motion of the spacecraft.

• The waveband ∆ν, in which the radiation is observed, is blue shifted by the
same factor

∆ν′ = κ∆ν0. (56)
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Relativistic Aberration and Time Dilation

• Time intervals are also different in the stationary and moving frames. This can
be appreciated by comparing the periods of the waves as observed in S and S′

ν′ =
1

T ′
; ν0 =

1

T0
, (57)

and so
T ′

T
=

ν0

ν′
. (58)

Since the periods T and T ′ can be considered to be the times measured on
clocks, the radiation emitted in the time interval ∆t is observed in the time
interval ∆t′ by the observer in S′ such that

∆t′ = ∆t/κ. (59)
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Relativistic Aberration and Time Dilation

• Solid Angles It is simplest to begin with the cosine transform, which is derived
from the ‘x’ Lorentz transformation of the frequency four-vector:

cos θ′ =
cos θ +

V

c

1 +
V

c
cos θ

. (60)

Differentiating with respect to θ and θ′ on both sides of this relation,

sin θ′ dθ′ =
sin θ dθ

γ2
(
1 +

V

c
cos θ

)2 =
sin θ dθ

κ2
. (61)

This result has been derived for an annular solid angle with respect to the
x-axis, but we can readily generalise to any solid angle since dφ′ = dφ and so

sin θ′ dθ′ dφ′ =
sin θ dθ dφ

κ2
dΩ′ =

dΩ

κ2
. (62)

The solid angle in S′ is smaller by a factor κ2 as compared with that observed in
S. This is a key aspect of the derivation of the aberration formulae.

45



Relativistic Aberration and Time Dilation

We can now put these results together to work out how the intensity of radiation
from the region of the Sun within solid angle dΩ changes between the two frames of
reference. The intensity I(ν) is the power arriving at the observer per unit frequency
interval per unit solid angle from the direction θ. The observer in the spacecraft
observes the radiation arriving in the solid angle dΩ′ about the angle θ′ and so we
transform its other properties into S′. The energy hνN(ν) received in S in the time
interval ∆t, in the frequency interval ∆ν and in solid angle ∆Ω is observed in S′ as
an energy hν′N(ν′) in the time interval ∆t′, in the frequency interval ∆ν′ and in
solid angle ∆Ω′, where N(ν) = N(ν′) is the invariant number of photons.
Therefore, the intensity observed in S′ is

I(ν′) = I(ν)×
κ× κ× κ2

κ
= I(ν)κ3. (63)

Now, let us apply this result to the spectrum of black-body radiation, for which

I(ν) =
2hν3

c2

(
ehν/kT − 1

)−1
. (64)
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Relativistic Aberration and Time Dilation

Then,

I(ν′) =
2hν3κ3

c2

(
ehν/kT − 1

)−1
=

2hν′3

c2

(
ehν′/kT ′ − 1

)−1
, (65)

where T ′ = κT . In other words, the observer in S′ observes a black-body radiation
spectrum with temperature T ′ = κT . A number of useful results follow from this
analysis. For example, (65) describes the temperature distribution of the Cosmic
Microwave Background Radiation over the sky as observed from the Solar System
which is moving through the frame of reference in which the sky would be perfectly
isotropic on the large scale at a velocity of about 600 km s−1. Since
V/c ≈ 2× 10−3 and γ ≈ 1, the temperature distribution is rather precisely a dipole
distribution, T = T0[1 + (V/c) cos θ] with respect to the direction of motion of the
Solar System through the Cosmic Microwave Background Radiation.

In the example of the spacecraft travelling at v = 0.8c towards the Sun, we can
illustrate a number of the features of relativistic beaming. In this case, γ = 5/3 and
the angle at which there is no change of temperature, corresponding to
γ[1 + (V/c) cos θ] = 1, is θ = 60◦.
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Relativistically Moving Source Components

Let us now turn to the case of relativistically moving source components. We need
to determine the value of κ for the source component moving at velocity V at an
angle θ with respect to the line of sight from the observer to the distant quasar. In
this case, a straightforward calculation shows that the value of κ is

κ =
1

γ

(
1−

V cos θ

c

), (66)

where the source is moving towards the observer as illustrated in the figure. Just as
in the above example, the observed flux density of the source is therefore

S(νobs) =
L(ν0)

4πD2
× κ3, (67)

where νobs = κν0. In the case of superluminal sources, the spectra can often be
described by a power-law L(ν0) ∝ ν−α

0 and so

S(ν0) =
L(ν0)

4πD2
× κ3+α. (68)
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Relativistically Moving Source Components

Thus, if the superluminal sources consisted of identical components ejected from
the radio source at the same angle to the line of sight in opposite directions, the
relative intensities of the two components would be in the ratio

S1

S2
=

1 +
v

c
cos θ

1−
v

c
cos θ


3+α

. (69)

It is therefore expected that there should be large differences in the observed
intensities of the jets. For example, if we adopt the largest observed velocities for a
given value of γ, cos θ = v/c, then in the limit v ≈ c,

S1

S2
=
(
2γ2

)3+α
. (70)

Thus, since values of γ ∼ 10 are quite plausible and α ∼ 0− 1, it follows that the
advancing component would be very much more luminous than the receding
component. It is, therefore, not at all unexpected that the sources should be
one-sided.
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Relativistically Moving Source Components

Another complication is the fact that the emission is often assumed to be associated
with jets. If the jet as a whole is moving at velocity v, then the time dilation formula
shows that the advancing component is observed in a different proper time interval
as compared with the receding component, the time which has passed in the frame
of the source being ∆t1 = κ∆t0 where ∆t0 is the time measured in the observer’s
frame of reference. If the jet consisted of a stream of components ejected at a
constant rate from the active galactic nucleus, the observed intensity of the jet would
be enhanced by a factor of only κ2+α. Thus, the precise form of the relativistic
beaming factor is model dependent and care needs to be taken about the
assumptions made.

Let us consider the case of sources exceeding the limiting surface brightness
Tb = 1012 K. In the case of the Inverse Compton Catastrophe, the ratio of the loss
rates for inverse Compton scattering and synchrotron radiation depends upon the
product νT5

b . Since the brightness temperature Tobs = κ5T0 and νobs = κν0, it
follows that η ∝ κ6. Thus, the observed value of Tb can exceed 1012 K if κ � 1.
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Relativistically Moving Source Components

In the case of the compactness parameter,

C =
LνσT

4πmec3 × ct
, (71)

the relativistic beaming factors enable us to understand why these sources should
exist. In the simple argument in which the source components are at rest, it is
assumed that the dimensions of the source are l ≈ ct from its rapid time variability.
The observed luminosity is enhanced by a factor κ3+α and, in addition, because the
time-scale of variability appears on the denominator, the observed value is shorter
by a factor κ and so the compactness parameter is increased by relativistic beaming
by a factor of roughly κ4+α. Since α ≈ 1, it can be seen that C ∝ κ5 and so, in the
frame of the source components themselves, the value of the compactness
parameter can be reduced below the critical value.
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The Acceleration of Charged Particles

This is a huge subject of importance for many aspects of high energy astrophysics
and there is only space to give a brief impression of the mechanism which now
dominates much of the thinking in the field. The preferred mechanism is involves
first order Fermi acceleration of particles in strong shock waves. Let us begin with a
simple general formulation of the acceleration process in which the average energy
of the particle after one collision is E = βE0 and the probability that the particle
remains within the accelerating region after one collision is P . Then, after k

collisions, there are N = N0P k particles with energies E = E0βk. Eliminating k

between these quantities,

ln(N/N0)

ln(E/E0)
=

lnP

lnβ
, (72)

and hence

N

N0
=

(
E

E0

)lnP/ lnβ

. (73)
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Fermi Acceleration

In fact, this value of N is N(≥ E), since this number reach energy E and some
fraction of them is accelerated to higher energies. Therefore,

N(E) dE = constant× E−1+lnP/ lnβ dE. (74)

Notice that we have obtained a power-law energy spectrum of the particles, exactly
what is required to account for the non-thermal spectra of many different classes of
high energy astrophysical sources.

In Fermi’s original version of the Fermi mechanism, α was proportional to (V/c)2,
because of the decelerating effect of the following collisions. The original version of
Fermi’s theory is therefore known as second order Fermi acceleration and is a very
slow process. We would do much better if there were only head-on collisions, in
which case the energy increase would be ∆E/E ∝ V/c, that is, first-order in V/c

and, appropriately, this is called first-order Fermi acceleration.
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First-order Fermi Acceleration

A very attractive version of first-order Fermi acceleration in the presence of strong
shock waves was discovered independently by a number of workers in the late
1970s. The papers by Axford, Leer and Skadron (1977), Krymsky (1977), Bell
(1978) and Blandford and Ostriker (1978) stimulated an enormous amount of
interest in this process for the many environments in which high energy particles are
found in astrophysics. There are two different ways of tackling the problem. One
starts from the diffusion equation for the evolution of the momentum distribution of
high energy particles in the vicinity of strong shock waves (for example, Blandford
and Ostriker 1978).

The second is a more physical approach in which the behaviour of individual
particles is followed (for example, Bell 1978). Let us adopt Bell’s version of the
theory which makes the essential physics clear and indicates why this version of first
order Fermi acceleration results remarkably naturally in a power-law energy
spectrum of high energy particles.
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First-order Fermi Acceleration

To illustrate the basic physics of the acceleration process, let us consider the case of
a strong shock propagating through the interstellar medium. A flux of high energy
particles is assumed to be present both in front of and behind the shock front. The
particles are considered to be of very high energy and so the velocity of the shock is
very much less than those of the high energy particles.

The key point about the acceleration mechanism is that the high energy particles
hardly notice the shock at all since its thickness is normally very much smaller than
the gyroradius of a high energy particle. Because of turbulence behind the shock
front and irregularities ahead of it, when the particles pass though the shock in
either direction, they are scattered so that their velocity distribution rapidly becomes
isotropic on either side of the shock front. The key point is that the distributions are
isotropic with respect to the frames of reference in which the fluid is at rest on either
side of the shock.
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It is often convenient to transform into the frame of reference in which the shock
front is at rest and then the up-stream gas flows into the shock front at velocity
v1 = U and leaves the shock with a downstream velocity v2. The equation of
continuity requires mass to be conserved through the shock and so

ρ1v1 = ρ2v2.

In the case of a strong shock, ρ2/ρ1 = (γ + 1)/(γ − 1) where γ is the ratio of
specific heats of the gas. Taking γ = 5/3 for a monatomic or fully ionised gas, we
find ρ2/ρ1 = 4 and so v2 = (1/4)v1 (see figure (b)).
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Now let us consider the high energy particles ahead of the shock. Scattering
ensures that the particle distribution is isotropic in the frame of reference in which
the gas is at rest. It is instructive to draw diagrams illustrating the dynamical
situation so far as typical high energy particles upstream and downstream of the
shock are concerned. Let us consider the upstream particles first. The shock
advances through the medium at velocity U but the gas behind the shock travels at
a velocity (3/4)U relative to the upstream gas (c). When a high energy particle
crosses the shock front, it obtains a small increase in energy, of the order
∆E/E ∼ U/c. The particles are then scattered by the turbulence behind the shock
front so that their velocity distributions become isotropic with respect to that flow.
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Now let us consider the opposite process of the particle diffusing from behind the
shock to the upstream region in front of the shock (Figure d). Now the velocity
distribution of the particles is isotropic behind the shock and, when they cross the
shock front, they encounter gas moving towards the shock front again with the same
velocity (3/4)U . In other words, the particle undergoes exactly the same process of
receiving a small increase in energy ∆E on crossing the shock from downstream to
upstream as it did in travelling from upstream to downstream.

This is the clever aspect of this acceleration mechanism. Every time the particle
crosses the shock front it receives an increase of energy, there are never crossings
in which the particles lose energy, and the increment in energy is the same going in
both directions. Thus, unlike the standard Fermi mechanism in which there are both
head-on and following collisions, in the case of strong shock fronts, the collisions are
always head-on and energy is transferred to the particles. The beauty of the
mechanism is the complete symmetry between the passage of the particles from
upstream to downstream and from downstream to upstream through the shock
wave.
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Results of Simple Calculations

The average energy gain when particles cross from one side of the shock to the
other is 〈

∆E

E

〉
= 2

3
V

c
, (75)

the factor of 2
3 coming from averaging over all angles of incidence of the particles

with respect to the shock wave. V = 3
4U is the speed of the material behind the

shock. Thus, in one round trip, the fractional energy gain is〈
∆E

E

〉
= 4

3
V

c
=

U

c
, (76)

The other factor we need is the fraction of the particles which are lost per cycle.
Particles are lost by being ‘advected’ downstream by the flow of gas behind the
shock, the downstream flux being 1

4UN , whereas the number of particles crossing
the shock is 1

4Nc. Thus, the loss probability is the ratio of these fluxes U/c and the
probability of the particles remaining within the accelerating region is

P = 1−
U

c
. (77)
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Therefore,

lnβ = ln
(
1 +

4V

3c

)
=

4V

3c
=

U

c
lnP = ln

(
1−

U

c

)
= −

U

c
. (78)

Inserting these values into (3), we find

lnP/lnβ = −1, (79)

and so the differential spectrum of the accelerated electrons is

N(E) dE ∝ E−1+lnP/ lnβ dE = E−2 dE. (80)

This is the remarkable result of this version of first-order Fermi acceleration. The
predicted spectrum is of power-law form with spectral index −2, corresponding to a
synchrotron emission spectrum α = 0.5. It may be argued that this is a somewhat
flatter spectrum than that of many non-thermal galactic and extragalactic sources.
Nonetheless, it is a remarkable result that roughly the correct form of spectrum is
found, particularly when it is appreciated that the result depends only upon the
assumption that the particles diffuse back and forth across a strong shock wave.
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