'New' Physics- See Longair 4.5

 The Cooling time ¢, ; = 3NKT/IAE/dfl ~8.5x10 %yrs(n/10-3) 1T, For

cool —

bremmstrahlung (Longair eq 4.24,4.25)

— but for line emission dominated plasmas it scales as Ty

» That is as the gas gets cooler it cools faster

A=cooling function

Teoor=5/20KT/D?A ~tyyy TsA ™ 531157

* In central regions of many clusters the density (n) is large, so the gas

can cool in t<10° yrs

— 5/2 (the enthalpy) is used instead of 3/2 to take into account the compression as

it cools (and remains in pressure equilibrium)

Observed Temperature Profiles

e If the gas is in equilbrium with
the potential (of the NFW form)

it should be hotter in the center | | i
. o { g A~
e But in many clusters it is 8 2 A s,
cooler- evidence for gas cooling 5 =
=
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Abell

Cooling Cores

1835 RCS Spectrum ond Models
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Flg. 22 XMM-Newton RGS spectrum of the central region of the prominent cool core cluster, A1835 com-

n

Rest Wovelength (A)

t. ., =69 e
cool (10'3 cm™

-1 1/2
T
Gvyr
) (1081() Y

: oo
: H
1 g
0.0
0.01 0.10 1.00
Radius (Raoo)

clusters

Cooling Time for a Sample of Clusters

* So what happens to the gas? ...
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Star Formation

e Bursts of Star Formation in
Cluster Centers

— At z<I elliptical galaxies show EEECLEUNCRRNTEIIENC
very little evidence for star
formation

» elliptical galaxies dominate
the stellar population of
clusters

— However in the center of cool
core clusters there can be lots

of star formation! SE€€ Deep
Chandra, HST-COS, and Megacam
Observations Of The PhoeNix
Cluster: Extreme Star Formation
And AGNFeedback On Hundred

Kiloparsecc Scales Michael McDonald
et al

High Redshifts

e The 'cooling flow" clusters
tend to show higher star
formation rates at higher

redshifts. ool f ]
_ Up to 1000My/yr (1) | - h
> 100:
e ﬁﬂ“' ]
— However the amountof =, m =g 14,0 10
. 1. . o yulm oy i1 v
material involved in star & L i TR
formation is much less 1 LY
than the amount of gas [ : ‘
theoretically predicted to vEoo e e e

cool



Theoretical and Observed Spectrum of 'Cooling' Regions

The theoretical

Isobaric Multiphose Cooling Flow Model

models of cluster
cooling predict
strong lines from
gas at kT<107k-
these are not seen
So the gas does not
cool isobarically-

Bremsstrohlung Continuum

KT,= 8 to O keV
1/3 Solor Abundonces

what else is going 9
on??
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Theoretical cooling model predicts the
flat line

Data are in strong disagreement

Something is wrong with the
assumptions (gravity, cooling)

Best idea is 'something else' is
happening- input of energy from active
galaxy in center

Not all the gas theoretically predicted to
cool forms stars
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Feedback

e There is evidence from
— cluster evolution,
— relation of temperature and luminosity,
— cutoff in galaxy star formation etc

 that additional physics beside gravity is needed to model
structure formation- this is called 'feedback’

e The injection of energy (momentum, entropy) from the
structures that have formed into the system

— We do not know how this process occurs but the only two forms of structures
that potentially have enough energy are

* star formation- 7 Mev/proton (nuclear processes
* AGN ~90-360 Mev/proton (star formation)

General Idea of Feedback

cooling and accretion
onto a central SMBH

cooling is arrested
(heating rate = cooling rate)

M. Gitti 2016



Feedback- How AGN Influence the Cluster Gas

Direct evidence from cluster x-ray images combined with radio
data that central AGN has strongly influenced the gas

91

Effects of Feedback in Image and Temperature
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e 'Color
Image of
the
Perseus
Cluster

AGN Feedback

Flg. 25 False color image of the central region of the Perseus cluster produced from images in three energy
bands 0.3-1.2, 1.2-2, and 2-7keV. An image smoothed on a scale of 10arcsec (with 80% normalization)
has been subtracted from the image to highlight regions of strong density contrast. The image shows a series
of nearly concentric “ripples” which are interpreted as sound waves or weak shock waves set off by the
activity of the central AGN (Fabian et al. 2006)




Declination (J2000)

X-ray and Radio Image

Abell 2052 (Blanton et al
2015) the radio plasma
(red) 'fills' the 'holes' in the
x-ray image (blue)

Cavaties and Low Freq Radio Emisson

The giant cavities seen in many
cooling flow clusters are often 'filled'
by low frequency radio emitting
plasma
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Effects of Feedback in Image and Temperature

the hot gas can apparently be strongly affected by AGN activity-
direct evidence of the ability of SMBHs to influence environment on
large scales
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Other Signs of Unexpected Activity
e Strong emission from Ha (gas at Sanders et al 20098

T~10% k) in centers of many cool core
clusters

McDonald and Veilleux 2009



Formation Growthof  (C-P. Ma

Cosmic Fluctuations

* Galaxy clusters form through : Primordial
gravitational collapse, driven by dark © : 5 fluctuations
matter (~80% of their total mass) R are amplified

* In the hierarchical scenario more
massive objects form at later times:
clusters of galaxies are produced by

.. gravit:;tional
the gravitational merger of smaller instability

systems, such as groups and sub-
clusters

Non-linear structures

ily by

Millenium
Simulation

Millennium Run
10.077.896.109 pastsces.
T

Sunayev-Zeldovich Effect

Thermal SZE is a small (<1 mK) distortion in the CMB caused by inverse
Compton scattering of the CMB photons Wavelength (mm)

fnen av fgasthTe

20 50 1(’)0 200
Frequency (GHz)
MB10564-0321 =z=0.83

100

Carlstrom et al.



Sec 4.6 & 9.5 in Longair
The Sunyaev-Zel'dovich Effect:
probe of Galaxy clusters
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Sunyaev-Zel'dovich Effect

Single Clusters

- Measure of integrated pressure
(total thermal energy)

- Distances, H,, H(z)
- Cluster gas mass fractions,

AT, SZE

o f nTdl

T, CMB

cluster structure, evolution studies

— Peculiar velocities at high z A

SZ Cluster Surveys:

- Exploit SZ redshift indépvhlkn‘(:e 1

- Measure growth of structure
and large scale velocity fields
to constrain Dark Energy

Carlstrom

S-Z Simple Physics

* The optical depth for the S-Z effect is
small

o the density of electrons is of order n, ~ 103
cm, the path length * through a cluster
medium ~ several Mpc. With a Thomson
cross section 0= 6.65 x10 "2 cm?,

optical depth T =n_ol~ 0.005; ~1%
probability that a CMB photon crossing a rich
cluster is scattered by an electron.

» Since the electron energy is much larger
that the energy of the photon, to first order
dv/v ~ kTe/m? = 1%. The resulting
fractional temperature change of the CMB
is of the order of 10-4,~300uk

* For areview see Carnegie Observatories
Astrophysics Series, Vol. 3: Clusters of
Galaxies: Probes of Cosmological Structure and
Galaxy Evolution, 2004 Using the Sunyaev-
Zelidovich Effectto Probe the Gas in
Clusters MARK BIRKINSHAW
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The spectrum of the thermal SZE has a
characteristic shape

all interacting CMB photons get
approximately a 1% boost in energy, the result
is a transfer of photons in the CMB spectrum
from lower to higher frequencies, resulting in a
decrease of brightness at low frequencies
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A Strange Fact

SZE decrement (mK CMB)
-0.6 -0.4 -0.2 0.0 0.2

e The amplitude of the S-Z effect is —]
independent of D, the angular w032 024 -0%e  p0s 000 o008
distance

DEC (DEG)

244,10 244,05 244.00 24395 243.90 243.85 243.80
RA, (DEG)

Fig.1. Map of Abell 2163 at 150 GHz, overlaid with
XMM-Newton X-ray contours (see Fig. 3) in unmits of
10Perg s~'em*aremin?. Because the correlated-noise re-
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Sunyaev-Zeldovich Distances

e The Sunyaev-Zeldovich effect Line integral of pressure

is the Compton scattering of »
microwave background photons AT x ) (V ) [ dz n ¢ (I’) T€ (I‘) 1
off the hot electrons in the IGM -

in the cluster 1

e At present ~400 clusters have SX X Ry /dz ne(z)z Te(z) A(T aZab)r
measured S-Z effect (1 ) ‘)
“decrements” and x-ray Geometry uncertalnt
temperatures (Primarily from
Planck and the South Pole (8] S‘(
Telescope and the Atacama TS 7 ( I

Cosmology telescope)

(AT,)? Ae,,o l

Angular distance D ,:AT| is the A X )

S-Z decrement, Sy, the x-ray SIO 9(_-

surface brightness, T, the x-ray

temperature,§ an angular size  A]] quantities are directly measurable

and A the cooling function with an x-ray image, temperature map
and S-Z image




Sunyaev-Zeldovich

103 T T TTTTT T T TTTTT T TTTTTH
effect L ]
Compton scattering changes - ]
o A =
both the angular and energy ' = E
. . . . g F
distribution of the microwave = 0
background nOE
. . ~ C
At low frequencies the result is < o1
a diminution (decrement) in
the surface brightness of the 0001 N A RRET] B AN L
. 1 3 10 30 100 300 1000
MWB whose amplitude and v/GHz
shape depends on the Compton , , » ,

. Fig. 1. The spectrum of the microwave background radiation, and the microwave
Optlcal depth, the 3_D background radiation after ])e\ssi\go tl.m)ugh lnn (exaggerated) sA:mt(‘riug. :\mmsp.lu‘r(' with
distribution Of the hot electrons y = 0.1 and 73 = 0.05 (as defined in Sections 3 and 6), compared with the integrated
and their temperature .

photon in
photon out
<
electron out b1z

The scattering geometry, in the frame of rest of the (']('mnmllg:)Zt' the interaction.
»ming photon, at angle @ relative to the r. axis, is deflected by angle ¢12, and emerges

Sunyaev-Zeldovich effect

The main technical limits are the long
exposures required in both the x-ray
band and the milli-meter (~1 day each
for the highest z clusters)

The S-Z decrement is independent of
redshift, while the x-ray surface
brightness drops as (1+z)*

Setting a practical limit to z~1.3 for the
X-ray measurements

In a massive cluster the typical optical
depth is T ~0.1

X-ray image

with S-Z

g contours for
z=0.54
cluster

NS 10540321
0.828

20583.7-0448
0.583

S-Z contours images for a
sample of clusters from
z~0.3-0.9

108



Dark Matter-Summary

e The existence of dark matter in clusters
and groups of galaxies is indicated by

very high mass-to-light ratio.

The observed optical luminosity of the
galaxies corresponds to a mass that is
much lower than the total cluster mass

* So alarge quantity of matter not visible as
stars

2) Direct evidence (Bullet cluster)
That dark matter and baryons can be
in different places

3) [ ensing

e X-ray emitting gas constitutes a portion-
~1/6™ of this "missing mass”.
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