'New' Physics
« The Cooling time ~t~nkT/e ~8.5x10 Oyrs(n/10-3) 1T,

* For bremmstrahlung but for line emission dominated plasmas it
scales as 1'Tg12 ;

« That 1s as the gas gets cooler 1t cools faster

A=cooling function

o T, =520kT/n?A ~tyyppe ISA! 553 n,7!

e In central regions where the density (n) is large can cool in t<10° yrs

* 5/2 (the enthalpy) is used instead of 3/2 to take into the compression
of as it cools (and remains in pressure equilibrium)
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Notice that the central
surface brightness of
cool core clusters (left
panel) 1s much higher
than non-cooling core
clusters




Cooling Time for a Sample of Clusters
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Observed Temperature Profiles

e If the gas is in equilbrium with
the potential (of the NFW form)
it should be hotter in the center

e But in many clusters it 1s cooler
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i Left panel (from Burns et al
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Theoretical and Observed Spectrum of 'Cooling' Regions

e The theoretical
models of cluster
cooling predict
strong lines from
gas at kT<107k-
these are not seen

* A major mystery

From Peterson and
Fabian 2007- top panel
shows the theoretical
curve from a isobarically
cooling cluster gas

The bottom panel shows
the model (in blue) and
real data in red. Notice
the strong disagreemens
near 15A (the location of
a strong line from the L
shell of Fe
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How much Gas 1s at Each Temperature

e Theoretical cooling model
predicts the flat line

Cooling Luminosity Limits
T T T

e Data are in strong disagreeme

* Something 1s wrong with the
assumptions (gravity, cooling)

e Bestidea is 'something else' 1s _:_; \
happening- input of energy ). i .
from active galaxy in center :
. 3
Figure from J. Sanders et al (2009) ' VoSl
showing the amount of gas in the R i

0.1 - L ]

core region of a set of clusters as a

function of temperature (each cluster I —
is a different COIOI’) Temperature (keV)
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Feedback

e There 1s evidence from cluster
evolution, relation of
temperature and luminosity,
cutoff 1n galaxy star formation
etc etc that additional physics
beside gravity 1s needed to

model structure formation- the
1s called 'feedback’
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'Color’
Image of
the Persel
Cluster

AGN Feedback

Flg. 25 False color image of the central region of the Perseus cluster produced from images in three energy
bands 0.3—1.2, 1.2-2, and 2-7keV. An image smoothed on a scale of 10arcsec (with 80% normalization)
has been subtracted from the image to highlight regions of strong density contrast. The image shows a series
of nearly concentric “ripples” which are interpreted as sound waves or weak shock waves set off by the
activity of the central AGN (Fabian et al. 2006)



Other Signs of Unexpected Activity

e Strong emission from Ho (gas ~ Sanders et al 20098

at T~10% k) in centers of many
cool core clusters

McDonald and Veilleux 2009



Formation

Galaxy clusters form through

gravitational collapse, driven by | %

dark matter (~80% of their total

mass)

In the hierarchical scenario

more massive objects form at

later times: clusters of galaxies
are produced bv the

Non-linear structures
grow primarily by
mergers

in LCDM cosmology

Millenium
Simulation

C-P. Ma

Growth of

Cosmic Fluctuations

Primordial
fluctuations
are amplified

by
gravitational
instability



How do Clusters Form- Mergers

e As time progresses more and more objects come together-
merge

Now 2t

E
£ 1of 1 '1 "I“ -
100yrs ago ' h] " u. ‘M“H‘Ml l”'“' ﬂl“ﬁ\'!ﬁ. ﬁ‘

s 10" 17O, O 10" h M, 07 KM,

Figure 1. BOG merger tree. Symbaols are colour-coded as a function of B - V colour and their arca scales with the stollar mass. Only
progemitors more massive than 10'° Mg h~" are shown with symbols. Circles are used for galaxios that reside in the FOF group inhabited



What 1s a Merger Tree

In LCDM cosmology structure
grows by the merging of bound
systems + infall

The fraction of contribution of
each component depends on
time and mass.
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Mergers

e Can have strong
spatial spectral
structure in a merger

20t
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. 24 |-

* Figure: temperature
map (in color) and

intensity map 28
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Fig. 15 Temperature map of the merging cluster A3921 by Belsole et al. (20035). The temperature map has
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notice the strong
spectral features
associated with the
physics of the merger



Temperature

N

Extreme Merger

e Bullet cluster
(1E0657)

e Allen and Million

0,008 0004 0006 CO0E 001 0012 0014 500 1000 1500 2000 2500 3000 3500 4000
Flg. 16 Thermodynamic maps for the ICM of the “bullet cluster”, 1E0657-56 (Million and Allen 2008)



Virialized systems- Clusters, Groups and Big galaxies

XMM Grating Results- J. Peterson et al

These data have less systematic errors than the CCD data but lower S/N
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Chemical Abundances In Clusters

* Remember:
— 80% of the baryons are in the gas
— We detect line emission in the x-ray band from atomic transitions
in H,He-like 1ons
— Clusters are roughly big closed boxes
e Use these data to measure the chemical abundance of the gas

— The strength of the lines depends on
e Atomic physics
e # of ions of a given species

* Temperature

— The number of protons (H atoms) depends on the strength of the
bremmstrahlung continuum

— The ratio of the number of 10ns to the number of protons is the
abundance with respect to hydrogen



Origin of 'Metals'

Metal production is dominated for
(0...N1) by supernova.

Type II (core collapse) produce most
of the O and Type I produce most of
the Fe.

The fraction of other elements (e.g.
S1,S) that are produced by the SN
depend on the IMF and the (poorly
understood) yields of the SN.

If the observed cluster galaxies are
the source of the metals and
'standard' SN rates and IMF are
assumed produces 1/3 of the the
observed metals

Since most of the metals are in
the gas>70% of the metals
generated in galaxies has to be
'lost' from galaxies (where the
stars live) to the ICM
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Relative Abundance of Different Elements

n
‘_' T I T

The relative RN
abundance of de Plaa et al. (2007) _
differenet elements 1s - 0 Ne Si S Ar Ca Fe [N
related to the
processes that produce
them

Fe and N1 are mostly
made (we think) 1n
type I supernova (the
explosion of a white
dwarf)

Oxygen and Neon are ©
made mostly 1n a type Atomic Number
IT SN- the explosion of

a massive star

Abundance ratio (X/Fe)
0.5
I

The relative and



Elemental mass (solar mass)

SNe la/ Total Ratio
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Elemental mass (solar mass)
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Metallicity Evolution

e There 1s weak evidence
for cluster metallicity
evolution- when and
where the metals produced

e Most of the metals were
in place at z~0.5 and
maybe at z~1

Ehlert and Ulmer 2009- figure shows the cluster metallicity

Anderson et al 2009

wE >

for3 samples as a function of redshift




Metals are synthesized in stars (galaxies):

Compare the mass of metals M, ., < (in units of Mg, )
with B-band luminosity of stars

(similar to mass to light ratio)

M metal, < R i £

Galaxy gfoulﬁ. ti_w tp ‘Iﬂiﬂ +3 e LB orK,<R

Galaxy clusters 5

0.01
1E-3

1 ..
1E-4 N & N Xray extended E

:'e]lipticals

“““““

1E-51F

I _,": X-ray compact ellipticals -1 Makishima et al (2001)

I | 2 P R T T
1E-6 10 .20 30 .50 100
Temperature (keV) ccmass of
system

Oxygen Mass-to-Light Ratio: OMLR
Magnesium Mass-to-Light Ratio: MMLR
Iron Mass-to-Light Ratio: IMLR



IMLR

Iron Mass to Light Ratio
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OMLR
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Metal enrichment process in the ICM
- shows factor of several variation

OMLR= oxygen
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Additional Material

B model, hydrostatic equilibrium and
cluster temperature profiles



Comparison of dark matter and x-ray cluster and group distribution
every bound system visible in the numerical simulation is detected in the x-ray band - bright regions are
massive clusters, dimmer regions groups,




Sound Crossing Time

« Sound speed

, P 5P
CC=y—===
p 3p
1/2
cszISOO( O{ ) km/s

« Sound crossing time

-1/2
 ~6.6x10° Py
10°K Mpc

Less than age _ unless something happens
—tmerger, AGN, ...),

gas should be nearly hydrostatic



Hydrostatic Equilibrium

VP =-pV¢
LdP__dp__GM(r)
o dr dr r’

spherical

Isothermal (T = constant)

lop_ly ka) (kT
um um

P o

[P0 ]- ( k";f’)[% ()]

Vinp=-V¢




Beta Model
(Cavaliere & Fusco-Femiano 1976)

Assume King Model DM potential and tha the
galaxies follow King Model, and have isotropic,
constant velocity dispersion: then (Sarazin 2008)

o dinp, dp_( kT \dinp
o dr dr \um,| dr
Pga,

Poa () = glO2-3/2

()



Beta Model (cont.)

0
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Beta Model (cont.)

Fit outer parts of € 10l
clusters = —
% . Beta model
(Multiple beta 8 00|
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Hydrostatic Equilibrium (cont.)

Adiabatic (Polytropic) Models
P« p" adiabaticif y =5/3
polytropicl <y =5/3

isothermaly — 1

bypo V[ % lvr

p y =1 um,

T0) 1y o100 o TC)
1, 0, 1,




Cluster Temperature Profiles

 Rapid T rise with r at Chandra
center (100 kpc, “cooling I
core”) gl |

. Tflatto 0.125 R

 Slow T decline with r at
large radii

vy~ 1.2

TATS

| 1 | 1 | 1 | 1
0 0.2 G4 0.6 0.8
r/an

(Vikhlinin et al 2005)



