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Short Bursts- Progenitor

* One of the ideas is that short bursts are the result of the merger of 2
neutron stars (B. Paczynski 1991)

* Observational support based on their observed properties
— lack associated supernovae
— occur in a mix of star-forming and elliptical galaxies
— have a broad spatial distribution around their
hosts, with some events offset by tens of kpc

and are located in low-density parsec-scale environments
The confluence of these characteristics provides support to the popular
model of compact object (CO) mergers ( Stone et al 2013) —e.g
runaway NS stars which merge.

strong impact on gravitational wave searches.
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Formation of GRBs-2 Scenarios

of a massive star. Both these events create a black hole

e —— L with a disk of material around it. The hole-disk system, in X-RAYS,
\ turn, pumps out a jet of material at close to the speed of :_’:Z‘::E
light. Shock waves within this material give off radiation. JETCOLLIDES WITH RADIU‘
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Gallery of GRB Lightcurves
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Gamma-Ray Bursts

e thought that they are ‘beamed’ - the energy is emitted in a ‘narrow’
cone, via particles moving close to the speed of light.

* The material behind the shock has relativistic temperatures; because
energy transfer between particles in two-body collisions becomes less
efficient with increasing temperature, many common emission
mechanisms are very inefficient in the shock-heated gas.

e The one mechanism that does well with relativistic particles is
synchrotron radiation —provided a significant magnetic field is
present. These efficiency considerations made synchrotron emission a

favored model
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Swift y-ray Burst

Chaser
over 1000 GRBs
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Swift was designed to find and study

GRBs

BAT- GRB finder and localizer

UVOT, XRT: UV/optical and x-ray telescopes to
study afterglow and identify source
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Swift Data- Multi-Wavelength

BAT Burst Image XRT Image
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GRB FIREBALL MODEL‘--.

Afterglow
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surrounding medium



General Schema of Fireball
e Compact central engine drives a collimated (6<10°)

ultra-relativistic, I'’>10, outflow with a high ratio of energy to
rest mass. Expands at ultra-relativistic velocities

y-rays produced
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\ begins as gamma rays
. and x-rays and continues
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\ \ \ decays
source / \ , quislly produced
\_/ > ' J by external shocks
| |
|
relativistic / J J
jot / J interstellar
/ ‘ matter
/
'71,"
She,. 't
oc,(s
reverse forward
shock shock

v 41
external shocks

see R+B sec 7.4.2-74.5

Progenitor
(massive star)

External

Internal shocks

shocks

Gamma-ray

burst Afterglow

® Energy density in a GRB event is so large that an optically thick pair/photon
fireball is expected to form, not clear how to turn the energy of a fraction of a
stellar rest mass into predominantly gamma rays with the right non-thermal broken
power law spectrum with the right temporal behavior

e Meszaros, P. and Rees M ARA& a40 (2002) 137-169 Theories of Gamma—l}zay
Bursts



External
shocks

Progenitor
(massive) star

Alerglow

Fireball Model, emission is

Afterglow § separated into 2 components:
Burst . S ethe prompt outburst phase
Pre-Burst— W < (strong gamma-ray and X-ray
: Eis1051-10% erg?_,,.»-- ol Shoc S § emission) due to internal shocks
%: Formation|§" "™ in the relativistic blast-wave,
----- ~A - 12dl0  othe afterglow (strong X-ray,
T~102s !

RESHOID G T h BT e optical and radio emission)

R~1014cm T~1003 arises from the cooling fireball
R~ 3x1016 cm . . .
J and its interaction with the
n=1em3 surrounding medium.

Particle Acceleration

e The continuum radiation from GRBs is due to highly relativistic
particles

* just like in SNR collisionless shocks are thought to be the main agents

for accelerating ions as well as electrons to high energies (e.g.,
Blandford and Eichler 1987, Achterberg et al. 2001).

* Particles are reflected from the shock and from scattering centers
behind it in the turbulent compressed region and experience multiple

scattering and acceleration by First-order Fermi acceleration when
coming back across the shock into the turbulent upstream region.

* With each reflection at the shock the particles gyrate parallel to the
moving electric field, picking up energy and surfing along the shock
surface.
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Direct Evidence of Relativistic Expansion

Just as the Earth's atmosphere causes visible starlight to twinkle,
interstellar plasma causes radio waves to scintillate (diffractive

scattering)

Early observations showed erratic, short term (~ hrs) fluctuations
in the radio emission. The origin of these variations 1is the
scattering of the radio emission, owing to the small angular size of
the fireball, as it propagates through the turbulent ionized gas of

our Galaxy.

After a few weeks the fluctuations stopped- indicating that the
source has grown in size such that it now longer 'twinkled'

The observed “quenching” of this scintillation pattern at t~2 weeks
lead to a determination of a size of 3pas, implying a mean apparent

motion of 4¢ (!)
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Direct Evidence of Relativistic Expansion

Radio VLBI can also measure very small sizes (Taylor et al 2004)
showed a observed expansion velocity of 3-5¢

Applying 'standard' superluminal
jet theory (Rees 1969) requires

a small angle to the line of sight
and I'>7

B,,is given by 3, =sin0 /(1 — cosO ),
then to get an apparent superluminal
expansion of Sc requires Lorentz
factors of ~7, and values of 3 | close to
unity
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parent angular size for a spherical fireball expanding
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Evidence for relativistic beaming- aka jets

* Brightness temperature is> 10'?’K (Compton catastrophe)
y-rays seen up to 7GeV; to avoid e+/e— pair production (and the accompanying

thermal spectrum), the GRB jet must be moving toward the observer with
ultra-relativistic speeds (the "compactness" problem; Cavallo & Rees 1978)
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Days after burst

Brightness Temperature Catastrophe
» If you keep scattering the same electrons, if the system is dense
enough, the system runs away: e.g. the amplification of scattered
radiation energy density, or a“Compton Cooling Catastrophe”.

* This occurs if Lic>>L 0
— Remember that L;o/L,=U
— (U is energy density)

/U

photon’ ~ magnetic field

* in order to avoid having infinite energy in the Compton scattered
electrons, there has to be a limit on the brightness temperature — a
measure of the photon energy density.*

e Thisis a self-regulating process—if the brightness temperature goes
too high, an infinite energy demand is set up, knocking it back down

*Brightness temperature is the temperature a black body in thermal
equilibrium with its surroundings would have to be to duplicate the

observed intensity. 48



Pair Production and a limit on the Relativistic Factor
Lithwick And Sari 2001

a photon with energy E' can annihilate a second photon with energy greater
than (m, c?)?/ E' yielding an electron-positron pair,(m, is the electron mass).

When the energy of the second photon is ~ (m, c?)?/E' then the cross section
for this process is approximately the Thomson cross section,o; The cross
section falls as a power law of the annihilating photon energy (Klein-
Nishina)

Averaging over the observed photon distribution the average cross section is
~0.060¢

If the emitting material is moving toward the observer with a Lorentz factor vy, the
photons are blueshifted by y. Thus, a photon with detected energy E=yE' can only
annihilate photons whose detected energies are greater than (ym, c2)?/E. Since most
of the photons are at low energies, the photon with the highest energy will be most
susceptible to annihilation by other photons.

a lower limit on the Lorentz factor can be obtained by requiring that the

photon with energy E_. ., will have optical depth smaller than unity.
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Luminosity 'Corrected' for Beaming

e Absolute 286 Titus J. Galama
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Implied Jet Opening Angle Distribution
» Rather narrow
implied beaming
angle distribution-
but this is a
selection effect
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The predicted time dependence and shape of the emitted
synchrotron spectrum from a fireball model- synchrotron
emission from a slowing down relativistic shell that collides
with an external medium. (Sari et al 1998)

Notice the different time dependences and spectral slopes

Radio to x-ray
spectrum of
GRB
afterglow 12
days after the
burst

Fireball looks

like a good
description of

data.

Log flux density (udy)

Y

Log Frequency (Hz)

Figure 12 The radio to X-ray spectrum of the afterglow of GRB 970508, 121 days after trigger,
showing all the characteristics of synchrotron emission (Galama et al 1998d).
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Full Solution (Zheng et al 2011)

* Generally, the prompt emission can be modeled as originating from internal shocks
or the photosphere of the fireball eject aor magnetic dissipation from a magnetically
dominated jet,

* the afterglow emission originates from external shocks that may include both
forward shock and reverse shock components (Meszaros & Rees 1997, 1999; Sari &
Piran 1999).

* For some GRBs many of the physical parameters can be determined if the full
optical and X-ray afterglow lightcurves can be interpreted within the standard
reverse shock (RS) + forward shock (FS) model.

— appling the standard fireball model

e the radiation mechanism is synchrotron,

the radius of prompt emission, Rggp~3 x 10! cm
* initial Lorentz factor of the outflow (I'y~ 250)

* the eject a are mildly magnetized

* collimation angle ~3-4

* the total energy budget ~7x10°° ergs.
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Spectroscopically Secure High Redshift Record

redshift
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e HST images
of GRB host
galaxies
(Fruchter et al
2006)- cross :
is position of ™ ooours
GRB- tends to
occur in
bright spot in
host galaxy.
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LOG N-LOG S- Numbers of sources with a flux >S
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Short vs Long GRBs

|
Short GRB m Long GRB
[ creosi221a g e
10° - T 5t . 4 GRB060105
i 2 m ! ) 2x10
@ = i ‘,__:—J j‘_ 1 @ [V'
é [ Short Long 1 é J I ]
U 0 / Durati‘on (s) N N ' UO b u\‘ L
0 100
t(s)
Short GRBs Long GRBs
in non-SF in SF
elliptical galaxies
galaxies
65

Montage of Burst Light Curves | ~100 GRBs per year
82% with x-ray detections
50% with optical detection

‘ Short GRB
ET T 7 " E E | 4 R T ‘_ T M| T T T T T
6x10" | GRBO41219a ] 1.6x10% £ GRBO50416b ] =x10" 'GRB050820b | GRB050724
E 3 E E| L ] ]
. E E ! F ) 1 oy 10
4x10* F E ; E %‘ : | R’L ] 2x10°
z . L | : ] |
S | T ot b
i pvs! = 10° Wbyt
0" TN P Liviy N
0 20 0 10
_ t(s) t(s) t(s)
Fast Rise Exponential Decay
Short GRB
T = AL AALLAAMLL] LML) LGS e SRR REERE s L
- [ GRB060105 ] 1.5x10* [ GRBO60223b 1 GRBO60313 GRB060501
< 4 - - r 1 104 . |
5x10* - 5

10‘3 m 7 |
LSS I T




1.5x10*

- GRB050401 GRB 990123 - HST

Long GRBs

10*

Energy: ~10°! ergs in y-rays (~5° beams)

< 10°! ergs in afterglow
~10°? ergs in outflow

Distance: <z>=2.3 (Swift average - long GRBs)

) ) GRB 050904 z = 6.29 - Subaru
11 Gyr light travel time - ‘

Jet Outflow: highly relativistic (I' > 100) w0t
?g 0.0 putalyd
Variability: ~ msec time structure in prompt burst % o5
H o WMMMW\M
.7000 7500 8000 8500 9000: 95‘00 10000
Power source: gravitational infall on new-born BHs pserved varlengh )

* Averaged over the
burst, long bursts log To,

(red/yeHOW) are -1.5 -08 0 0.7 1.5 22 30
more luminous e —— -
that short bursts g long . Jo
10 - o short N
(blue) LN
i .. °’;:° T
— . L] __-2
5109— ., J* . . ‘I)
- 0 = et 3 £
5 * o '__"-3
g ° 2 ._g’.
Y07 -4
* 3
=
- ]
1 3°
01 1.0



Count Rate (0.3—10.0 keV) (s™")

GHB 071020
blue WT —red PC
T T

Flux often declines as a
power law in time- but not
always
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