

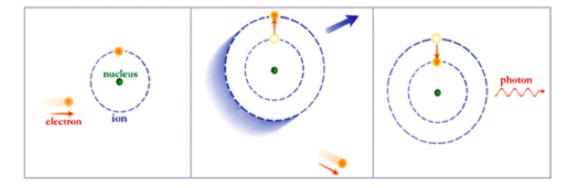
There are 4 sources of information in astrophysics- image, spectrum, time series and polarization. All of these are derived from observations- one cannot perform an experiment

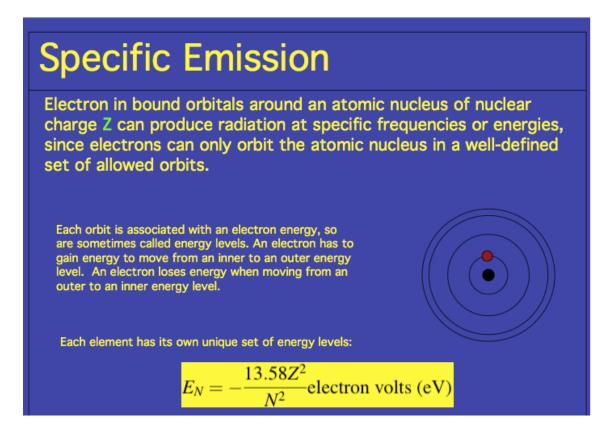
This can be combined- imaging spectroscopy, or time resolved spectroscopy etc

In all energy ranges have continuum process

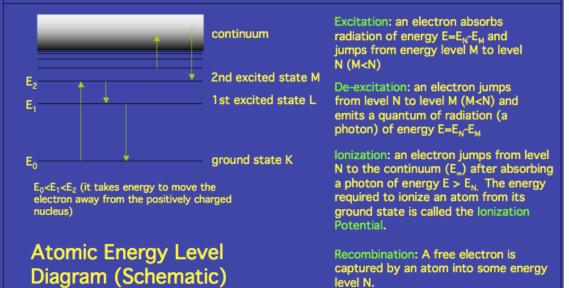
The other main source of information is emission and absorption 'lines'

- At 1Å < λ <50 μ 'atomic processes' dominate
 - In x-ray band most transitions from He or H-like ions (1-2 electrons). Also have features from Fe L shells (3-10 electrons).
 - Also have fluorescence lines from all shells
- At $\,\lambda$ >50 μ molecular processes (e.g. features due to CO etc)
- At E>10 keV nuclear processes dominate- e.g. radioactive decay, β capture etc

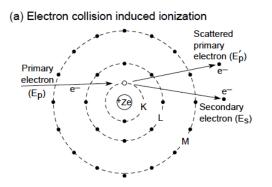

Notice mixed units (!)

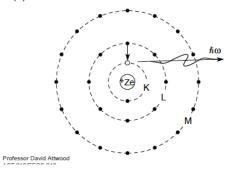

LINE EMISSION

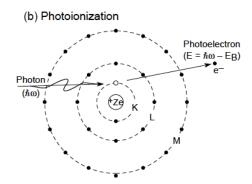
- Excitation of atoms by:
 - Thermal collisions
 - Radiative excitation
- Then radiative de-excitation


the most common mechanism of line emission is from collisionally excited radiative decay

Radiative transition rate (aka "Einstein A value") is the expected number of spontaneous transitions per second/atom from one level to another $A_{ij}=1/t_{radiative}$

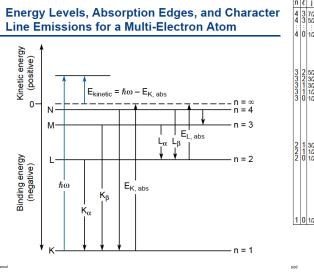

Electronic Processes

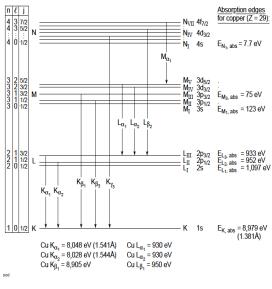

TYPES OF LINE EMISSION



3 Ways to Excite Atoms

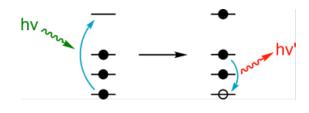
(c) Fluorescent emission of characteristic radiation

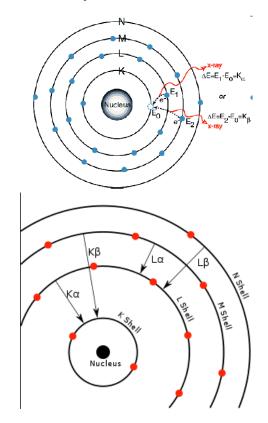




3 ways to produce a Photon via 'atomic' process (an incomplete set)

Generic Atom

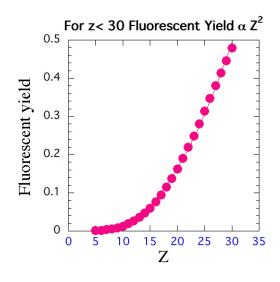


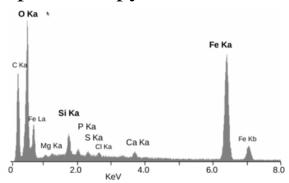


Copper Atom

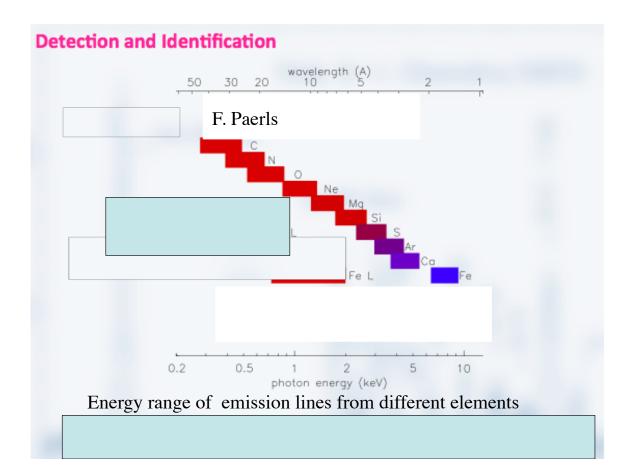
Fluorescence

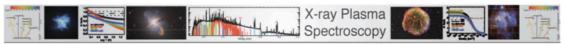
- Following removal of an inner electron by an energetic photon by radiation source, an electron from an outer shell drops into its place.
- This process can produce x-ray line radiation even from totally unionized (cold) atoms
- L- \longrightarrow transition K α ,
- M K K β, M Lα etc
- Very important in x-ray binaries and AGN





X-ray fluorescence


Fluorescence Spectroscopy


- Strength of lines is α to fluorescence yield x abundance
- fluorescence yield α to Z^2

For many x-ray spectra Fe is the dominant fluorescent lineconvolution of abundance of Fe and yield

lons of Importance

In x-ray spectra

All ions are equally important.

...but some are more equal than others.

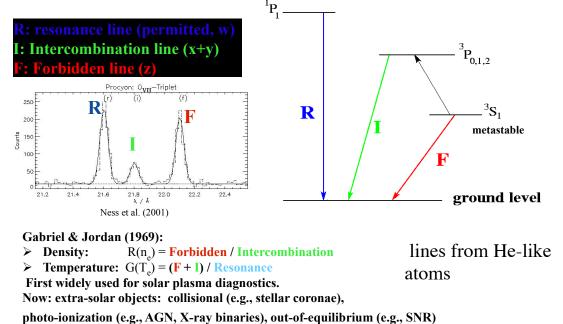
In collisional plasmas, three ions are of particular note:

H-like : All transitions of astrophysically abundant metals $(C \rightarrow Ni)$ are in the X-ray band. Ly α /Ly β is a useful temperature diagnostic; Ly α is quite bright.

He-like: $\Delta n \ge 1$ transitions are all bright and in X-ray. The $n=2 \rightarrow 1$ transitions have 4 transitions which are useful diagnostics, although R=300 required to separate them.

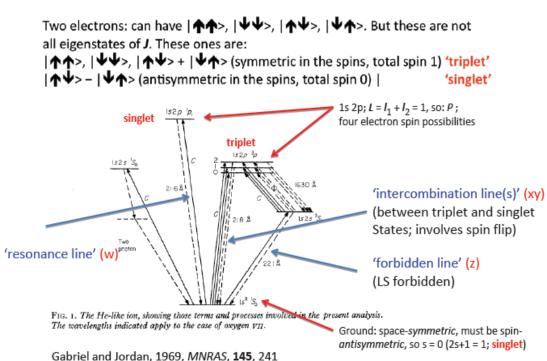
Ne-like: Primarily Fe XVII; two groups of bright emission lines at 15Å and 17Å; ionization state and density diagnostics, although there are atomic physics problems.

Detection and Identification: What are you looking at? Atomic Structure, energy levels


H-like ions:

$$E_n = \frac{-Z^2 \mathcal{R}}{n^2} \Rightarrow$$

$$\frac{E_n}{m_e c^2} \sim \mathcal{O}\left(\frac{v^2}{c^2}\right) = -\frac{1}{2}\alpha^2 \frac{Z^2}{n^2}$$


(Z: nuclear charge; \Re : Rydberg, 13.6 eV; $\alpha = 1/137$)

Helium-like Atoms: Plasmas excited to x-ray
emitting temperatures are dominated by He-like
(2 electron) and H-like (1 electron atoms)Energy Levels

A Little Bit About Atomic Spectral Nomenclature

He-like ions:

H- and He-like ions in practice: wavelengths

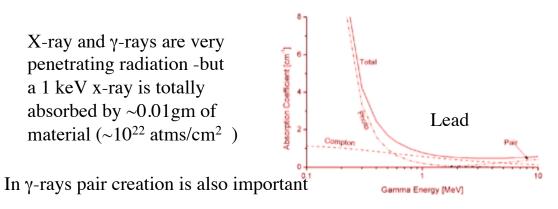
Lots of lines !

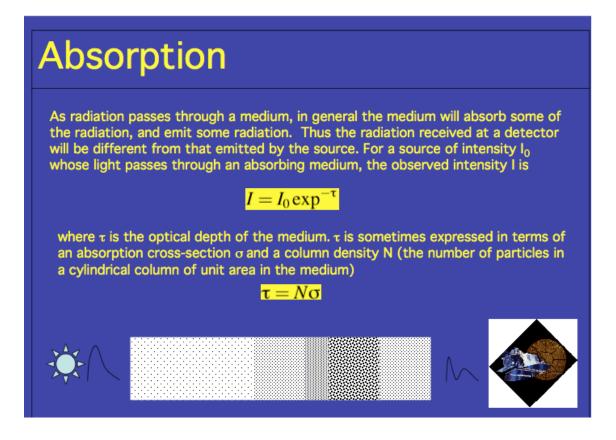
Ion	Lya1		Lya ₂		K-edge	
TOIL	λ (Å)	E (keV)	λ (Å)	E (keV)	λ (Å)	E (keV)
C VI	33.7342	0.36754	33.7396	0.36747	25.3033	0.489993
N VII	24.7792	0.50036	24.7846	0.50024	18.5871	0.667046
O VIII	18.9671	0.65368	18.9725	0.65348	14.2280	0.871410
Ne X	12.1321	1.02195	12.1375	1.02150	9.10177	1.36220
Na XI	10.0232	1.23697	10.0286	1.23631	7.52011	1.64870
Mg XII	8.41920	1.47264	8.42461	1.47169	6.31714	1.96266
AI XIII	7.17091	1.72899	7.17632	1.72769	5.38093	2.30414
Si XIV	6.18043	2.00608	6.18584	2.00432	4.63808	2.67318
S XVI	4.72735	2.62270	4.73276	2.61970	3.54830	3.49419
Ar XVIII	3.73110	3.32299	3.73652	3.31817	2.80113	4.42622
Ca XX	3.01848	4.10750	3.02390	4.10014	2.26668	5.46986
Fe XXVI	1.77802	6.97316	1.78344	6.95197	1.33637	9.27760

H-LIKE SPECIES

Lines: Johnson, W. R., & Soff, G. 1985, Atom. Data Nucl. Data Tables, 33, 405

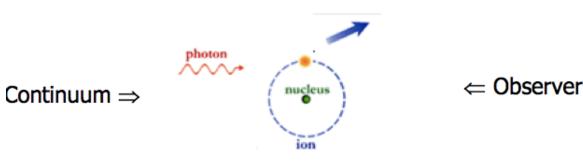
HE-LIKE SPECIES

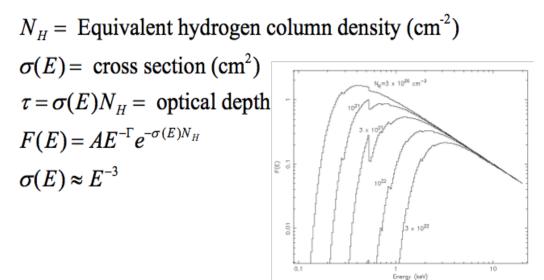

Ion	w(resonance)		x(intercombo)		y(intercombo)		z(forbidden)		K-edge	
100	λ (Å)	E (keV)	λ (Å)	E (keV)	λ (Å)	E (keV)	λ (Å)	E (keV)	λ (Å)	E (keV)
CV	40.2674	0.307902	40.7280	0.304420	40.7302	0.304404	41.4718	0.298960	31.63	0.392
N VI	28.7800	0.430800	29.0819	0.426328	29.0843	0.426293	29.5346	0.419793	22.46	0.552
O VII	21.6015	0.573961	21.8010	0.568709	21.8036	0.568641	22.0974	0.561080	16.78	0.739
Ne IX	13.4473	0.922001	13.5503	0.914992	13.5531	0.914803	13.6984	0.905100	10.37	1.196
Na X	11.0029	1.12683	11.0802	1.11897	11.0832	1.11867	11.1918	1.10781	8.463	1.465
Mg XI	9.16875	1.35225	9.22817	1.34354	9.23121	1.34310	9.31362	1.33121	7.037	1.762
AI XII	7.75730	1.59829	7.80384	1.58876	7.80696	1.58812	7.87212	1.57498	5.944	2.086
Si XIII	6.64795	1.86500	6.68499	1.85467	6.68819	1.85378	6.73949	1.83967	5.085	2.438
S XV	5.03873	2.46062	5.06314	2.44876	5.06649	2.44714	5.10067	2.43074	3.846	3.224
Ar XVII	3.94907	3.13958	3.96587	3.12628	3.96936	3.12353	3.99415	3.10414	3.009	4.121
Ca XIX	3.17715	3.90237	3.18910	3.88775	3.19275	3.88330	3.21103	3.86120	2.417	5.129
Fe XXV	1.85040	6.70040	1.85541	6.68231	1.85952	6.66754	1.86819	6.63659	1.404	8.828


Lines: Drake, G. W. 1988, Can. J. Phys., 66, 586 Edges: HULLAC, except for Na & Al (Verner et al. 1996, ApJ, 465, 487)

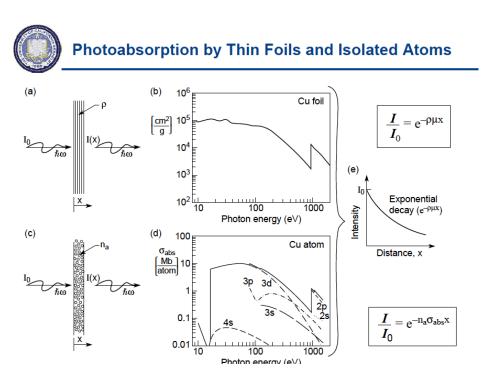
Absorption of X and γ -ray Photons

- Absorption processes
 - Photoelectric absorption Longair 9.1
 - Ionized gas: warm absorbers
 - Absorption lines


absorption of γ -rays via pair creation, photoelectric effect, Compton scattering (photons reduced in energy, not absorbed).



PHOTOELECTRIC ABSORPTION

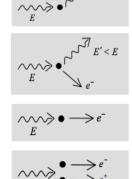

- Bound-free ionization of e⁻ by photon
- Threshold energy E_{th}=hv depending on ionziation potential of atom (i.e. on Z)
- Abundant elements (C,N,O) are light: absorption dominant at soft (<1 keV) X-rays

PHOTOELECTRIC ABSORPTION

Profile dominated by bound-free edges of abundant elements

David Atwood UCB Course Ast 210

X-ray Absorption

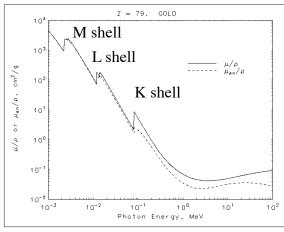

I=I(0,E)exp(-σn);σ is the cross section per atom as a function of energy; n is the number of atoms

For normal materials

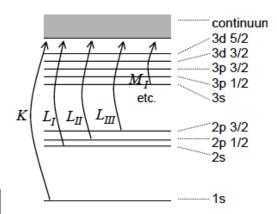
- E<100 kev photoelectric absorption dominates
- 100 keV<E<1 MeV Thompson and Compton scattering dominate
- E> 1 MeV (2m_ec²) pair production dominates
- when photoelectric absorption dominates there are prominent "absorption edges" characteristic of the binding energies of electrons in specific atoms (or ions)

Summary: interactions of X-rays with matter

- elastic scattering (Thompson or Rayleigh scattering)
- inelastic scattering (Compton scattering)
- photoelectric absorption
- pair creation



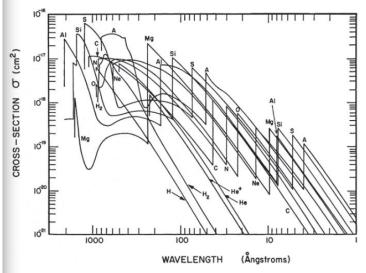
from


http://www2.fkf.mpg.de/keimer/lecture/ Scattering_I/MS_6.pdf

energy of absorption edge is characteristic of specific element. E.g. for *K*-edge: $E_{K} \sim (Z(Z-1))13.58 \text{ eV}$ where *Z* = nuclear charge

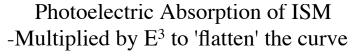
Gold- Absorption Cross Section vs Energy

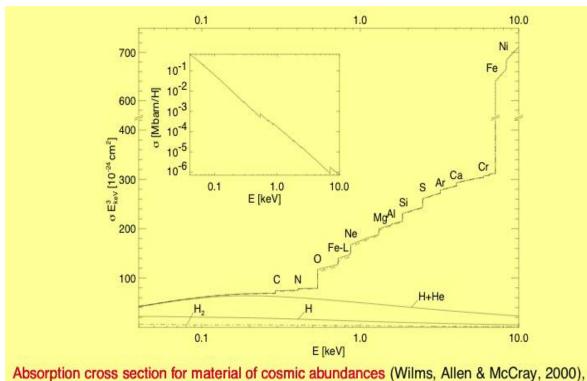
log Energy (MeV)

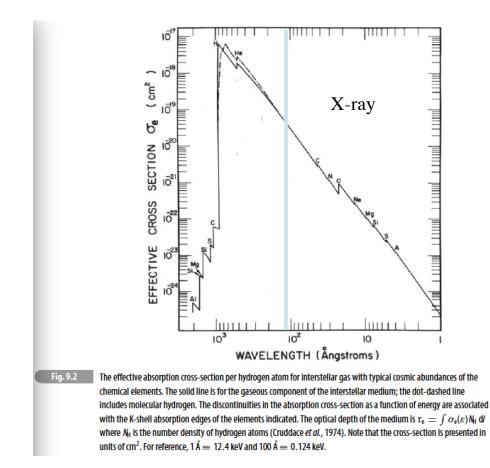


- strong *energy dependence* of absorption coefficient.

This is the origin of the diminishing relative importance of photoelectric absorption with increasing energy. – *absolute magnitude* of *cross section* depends strongly on Z.


Photo-electric Cross Sections


- Notice the strong change with energy
- these cross sections need to be multiplied by the total column density in a given element which is proportional to the abundance of that element
- the spectra of many X-ray sources turn over at about 1 keV because of interstellar photoelectric absorption.
- Because of the steep energy dependence of $\tau(E)$, photoelectric absorption is only important at energies E < 10 keV



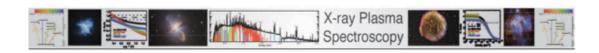
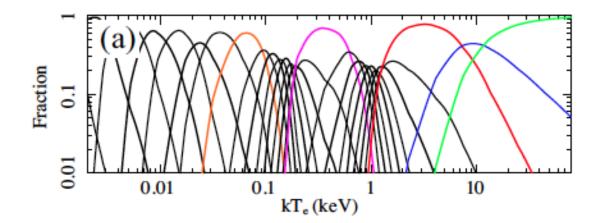
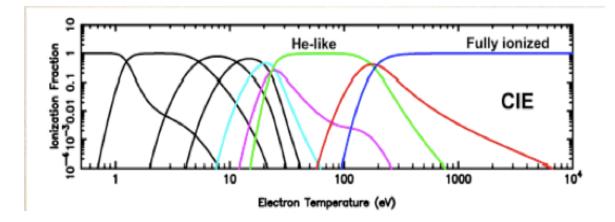

toabsorption cross-sections of the abundant elements in the interstellar medium as a function of wavelength

Fig 9.1 Longair

The basic atomic processes in astrophysical X-ray emitting plasmas are two-body collisional excitation & ionization, photoexcitation & ionization, spontaneous radiative decay, and two-body recombination.


A consequence of this is that the plasmas can be separated into two categories:

- Collisional: k_BT_e ~ Ionization energy of plasma ions
- Photoionized:

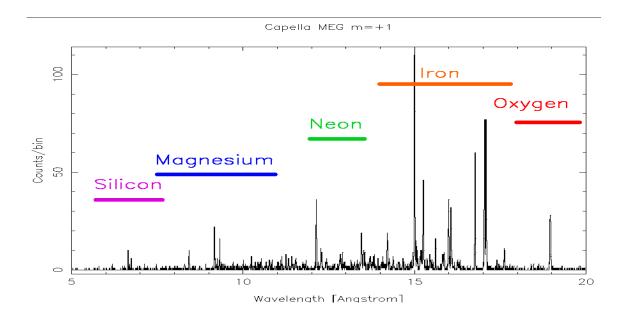

 $k_{\rm B}T_{\rm e}$ << lonization energy of plasma ions

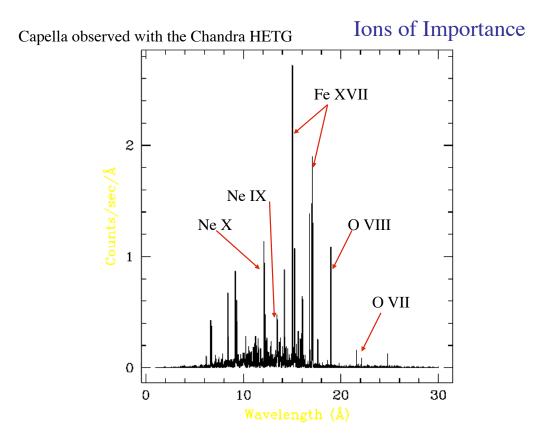
Collionsially Ionized Plasma

• The fraction of Fe that is in a given ionization state as a function of the temperature (red is He-like Fe, blue is H-like Fe, magenta is is Ne-like (Fe+16), orange is Ar like,Fe+18)

• As gas gets hotter it gets more ionized

same graph , but now for Oxygen; 100eV=1.17x10⁶k (CIE- means gas is in Collisionally Ionized Equilibrium)


Plasma Codes


Understanding a collisional plasma requires a collisional plasma model. Since even a simple model requires considering hundreds of lines, and modern codes track millions, most people select one of the precalculated codes:

Code	Source
Raymond-Smith	ftp://legacy.gsfc.nasa.gov/software/plasma_codes/raymond
SPEX	http://saturn.sron.nl/general/projects/spex
Chianti	http://wwwsolar.nrl.navy.mil/chianti.html
ATOMDB	http://cxc.harvard.edu/ATOMDB

The calculated spectrum is also known as APEC, and the atomic database is called APED.

Chandra Grating Spectrum of Capella

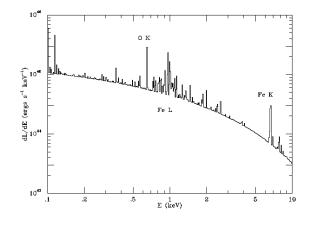
Collisionally Ionized Equilibrium Plasma-Capella

Capella AXAF HEG Mode 100 ksec Exposure 200 Comparison of Low resolution Xray spectra (CCD- see last weeks New Fe Lines 150 Counts lectures) with a 'high' (R~500) (Liedahl & Brickhouse 1998) resolution grating spectrum 100 50 0.50 ٦ و Capella ASCA SIS0 + SIS1 9.0 9.5 10.0 10.5 11.0 Wavelength (Angstroms) 11.0 11.5 12.0 0.40 1996 March 3 to 4 Counts/sec/Å 0.30 unuluun 0.20 0.10 0.00 10 Wavelength (Å) 20 15

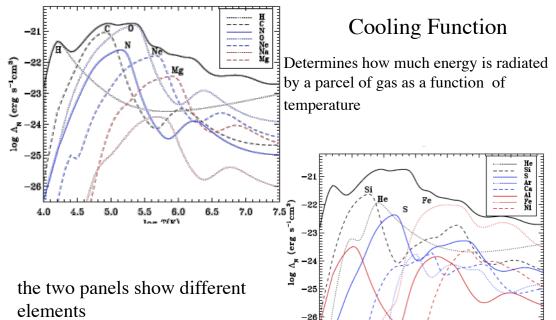
250

1111

Physical Processes


- Continuum emission
 - Thermal bremsstrahlung, ~exp(-hv/kT)
 - Bound-free (recombination)
 - Two Photon
- Line Emission

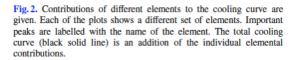
(line emission)


$$L_{v} \sim \epsilon_{v}$$
 (T, abund) (n_e² V)

 $I_v \sim \varepsilon_v$ (T, abund) ($n_e^2 I$)

Line emission dominates cooling at T<10⁷ K Bremmstrahlung dominates at higher temperatures

$$\epsilon(\nu) = \frac{16 e^6}{3 m_e c^2} \left(\frac{2\pi}{3m_e k_B T_X}\right)^{1/2} n_e n_i \ Z^2 \ g_{ff}(Z, T_X, \nu) \ \exp\left(\frac{-h\nu}{k_B T_X}\right)$$



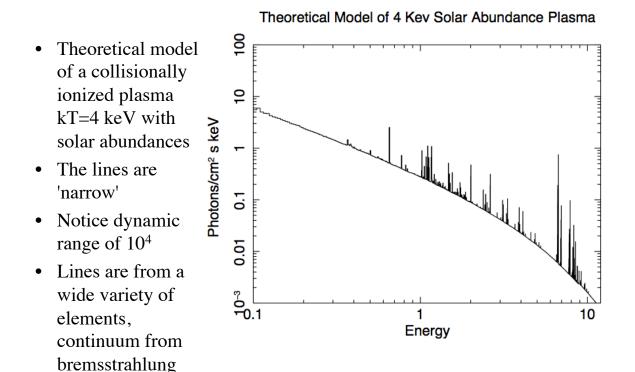
4.0

4.5

5.0

Notice that oxygen dominates cooling at $\log T \sim 5.5$, while Fe dominates at $\log T \sim 6-7$

5.5


6.0

log T(K)

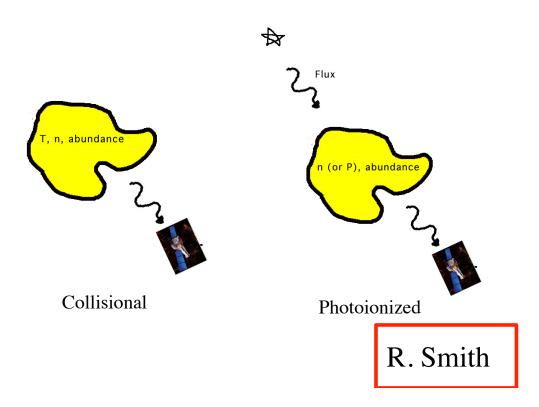
6.5

7.0

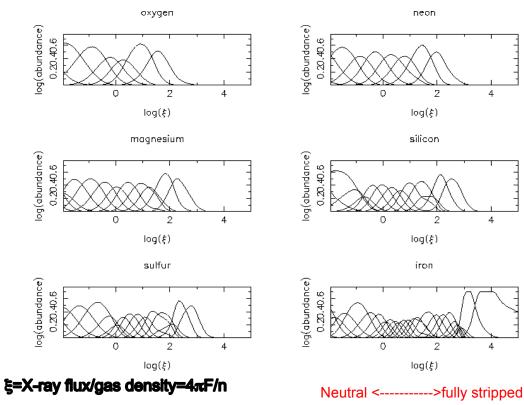
7.5

Photoionized Plasmas

What happens when an external photon source illuminates the gas?


- The photons ionize the atoms in the gas.
- The photoelectrons created in this way collide with ambient electrons (mostly) and heat the gas
- The gas cools by radiation
- The gas temperature adjusts so that the heating and cooling balance

In a photoionized gas the *temperature* is not a free parameter and


The *ionization balance* is determined by the shape and strength of the *radiation field*

R. Smith

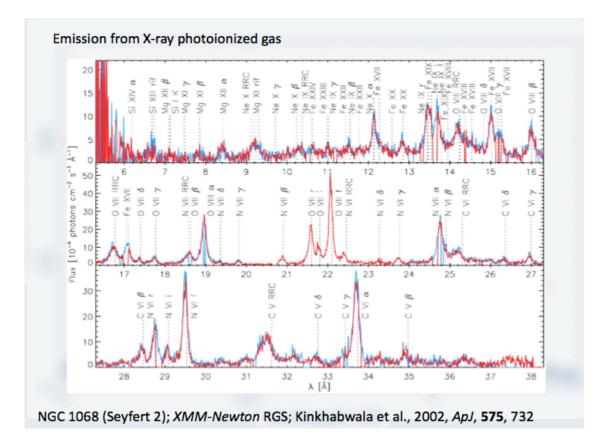
Photoionized Plasmas



Ionization fractions of elements in a photoionized gas

Plasmas R. Smith

	Photoionized	CIE
Dominant ionization	Photoionization hv+Z ->Z+1	Electron impact e ⁻ +Z ->Z+1
Examples	Active galaxies(AGN) binary stars with collapsed companion H II regions	Stellar coronae Supernova remnant Clusters of galaxies
Spectral signature	Absorption,bound- free, bound-bound Emission: recombination	Emission lines, $\Delta n=0,1,2$ favored



Both collisional and photoionized plasmas may be in equilibrium or out of it.

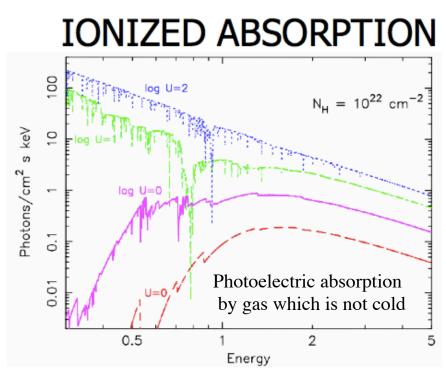
• A collisional or photoionized plasma in ionization equilibrium (usually called a CIE or PIE plasma) has the property that

 $I_{rate}(Ion) + R_{rate}(Ion) = I_{rate}(Ion^{-}) + R_{rate}(Ion^{+})$

- A non-equilibrium ionization (NEI) plasma may be:
 - lonizing $[\Sigma I_{rate}(I) > \Sigma R_{rate}(I)]$
 - Recombining $[\Sigma I_{rate}(I) < \Sigma R_{rate}(I)]$
 - Other

The Ionization Parameter

- In practice gas may be hot (collisionally ionized) or, more importantly, photoionized
- Ionization parameter (flux/density):

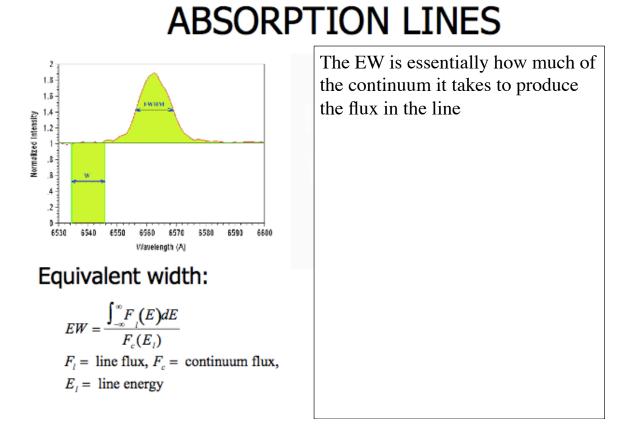

$$\xi \equiv \frac{L_X}{n_e R^2} \quad \text{Tarter, Tucker \& Salpeter (1969)}$$

$$U_X \equiv \frac{N_X}{4\pi R^2 n_e c} \quad \text{Davidson (1974)} \quad \text{Nx= \# of Photons}$$

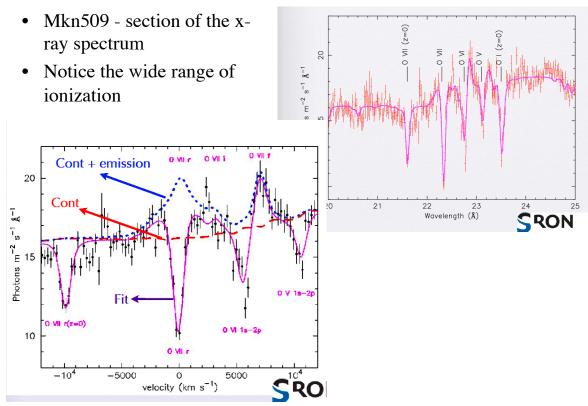
$$L_X \equiv \int_{E_{\min}}^{\infty} L(E) dE \quad N_X \equiv \int_{E_{\min}}^{\infty} \frac{L(E)}{E} dE$$

$$E_{\min} = 13.6 \text{eV, 0.1 keV, 0.7 keV (Davidson, Netzer, George)}$$

The ionization parameter controls ionization state of a photoionized plasma



Continuum absorption profile still can be dominated by bound-free edges of abundant elements but.things get comple


ABSORPTION LINES

- Absorption by a specific transition in atom
- Cross-sections larger than photoelectric
- But only over a small wavelength range
- Strength depends on Doppler parameter *b*
- Can measure $N_{\rm H}$, U, velocity etc.

Examples of Emission and Absorption Lines

Summary

- blackbody : everything hits everything, many times- equilibrium
- synchrotron : electrons bend in magnetic fields
- bremmstrahlung (free-free) : electrons bend in electric fields
- Compton scattering : photons hit electrons
- inverse Compton : photons hit energetic electrons
- free-bound : electrons hit atoms, get captured
- photoionization : photons hit atoms, electrons escape
- charge exchange : ions hit neutrals, swap electrons
- bound-bound : electrons jump down quantum levels

Conclusions

There are relatively few processes that dominate X-ray emission; analyzing the observed spectrum from each can reveal the underlying parameters. These processes are:

• Line emission

- Collisional \Rightarrow temperature, abundance, density, dynamics
- Photoionized ⇒ photoionization parameter, abundance, density,dynamics
- Synchrotron emission \Rightarrow relativistic electrons, magnetic field
- Inverse Compton scattering \Rightarrow relativistic electrons
- Blackbody \Rightarrow temperature, size of emitting region / distance²
- Absorption \Rightarrow abundance, density, velocity

•**Γ**-ray spectra are continuum dominated with Synchrotron emission and Inverse Compton scattering dominatingphotoelectric absorption is unimportant. Next Lecture

• Clusters of galaxies