Strong gravity and accreting black holes

- Finish how to get the masses of black holes
- The AGN Zoo
- Black Hole systems
 - The spectrum of accreting black holes
 - X-ray "reflection" from accretion disks
 - Strong gravity effects in the X-ray reflection spectrum

Spectra of accreting black holes

Spectra of accretion flow: disc-C. Done

- Differential Keplerian rotation
- Viscosity : gravity \rightarrow heat
- Thermal emission: $L = A\sigma T^4$
- Temperature increases inwards
- GR last stable orbit gives minimum radius $R_{\rm ms}$
- $a=0: T_{max} = (M/M_{\odot})^{-1/4} (L/L_{Edd})^{1/4}$
 - 1 keV (10⁷ K) for 10 M_{\odot}
 - 10 eV (10⁵ K) for 10⁸ M_{\odot}
- $a=0.998 T_{max} \sim 2.2 T_{max} (a=0)$
- AGN: UV disc, ISM absorption, mass more uncertain. XRB...

What Do Broad Band Spectra of Black Holes Look Like

Log(frequency)

Derivation (See Rosswog and Bruggen sec 8.4)

- Derivation of previous eq
- L=2πR_{in}²f(cos i) ⁻¹; f is the flux from the surface of the disk, R is the radius
- Using the black body law

 $L=4\pi\sigma R^2 T_{in}^4$ σ is the Stefan- Boltmann constant

In fitting the spectrum T_{in} is directly observable We can thus take the 2 equations to get the innermost radius $R_{in} = sqrt(L/4\pi\sigma T_{in}^{4})$ and $T_{in} \sim 3M_{10}^{-1/4} keV$

$$T(r) = 6.3 \times 10^5 \mathcal{M}_{\mathcal{E}dd}^{1/4} M_8^{-1/4} (r/r_s)^{-3/4}$$

($\mathcal{M}_{\mathcal{E}_{dd}}$ is the accretion rate in Eddington units, $T=T_{in}$ for $r=r_s$)

Real Objects

 Amazingly data for galactic black holes agrees with the simple theory

 $L_{\rm bol} = \eta L_{\rm E} \propto \eta M$,

AGN

- AGN are very massive and so the predicted spectrum of the accretion disk is 'cool'
- T~8x10⁴ k for a Eddington limited M~10⁸M $_{\odot}$ black hole

Malkan and Sun 1989

Can Fit AGN UVoptical data with accretion disk models

Fitted Parameters for UV Disk Fits

- Results are 'reasonable' but not unique
- Now have independent mass estimates- results can be checked
- Find that values are not quite right- need more complex accretion disk models (surface is not BB relativistic effects)

Relativistic effects imprint characteristic profile on the emission line...

1.2

Andy Young

Observations of relativistic emission lines

- First seen in 1994 with ASCA observatory
- 5 day observation of Seyfert-1 galaxy MCG-6-30-15
- Needed long observation to collect enough photons to form detailed spectrum

Power-law continuum subtracted ASCA: Tanaka et al. (1995)

Relativistic Effects

- Light rays are bent by strong gravity- making the geometry rather complicated
- Do not know 'where' x-ray source is try to use data to figure it out

- Modern XMM-Newton observations
- Confirm relativistic line with extreme redshifts
- If no line emission from within ISCO, need to invoke spinning black hole to get strong enough redshifting

Power-law continuum subtracted XMM: Fabian et al. (2002)

Spectra are quite complex...

- Applied models to long (350ks) XMM dataset for MCG-6-30-15
 - Data strongly prefers rapidly spinning BH solution

• a ~ 0.93

L.Brenneman

