

Finding and Weighing Clusters

Mark Bautz

MIT Kavli Institute for Astrophysics & Space Research

Overview

- Finding clusters
- Weighing clusters
- Some results from cluster cosmology
- The role of Astro-H

Bibliography

- Allen, Evrard & Mantz, 2011 Ann. Rev. Astron. Astrophys. 49, 409
- Benson et al., 2013 ApJ 763, 147
- Hoekstra et al., 2013 arXiv:1303:3274
- Vikhlinin et al., 2009 ApJ 692, 1060

Requirements for Cluster Finding

- Both methods (growth-of-structure and $\rm f_{\rm b}$) require cluster samples with:
 - * known redshift, over a large range of z
 - * known mass and (generally) high mass
- Growth of structure measurement also requires a statistically well-defined sample
 - * For dN/dV, must count them all or at least know how many were missed (completeness)

Requirements for Cluster Finding

- Massive clusters are especially important
 - * for growth: massive clusters form most recently, & thus more sensitive to cosmology
 - * for f_{b:} 'fair-sample' hypothesis is most plausible
 - * for both: physics is simpler \rightarrow mass more accurate
- Massive clusters are rare → large volumes must be searched

Cluster survey methods

Abell 1835

Allen+ 2011

X-ray wavelengths

Optical wavelengths

Millimeter wavelengths

Chandra/Mantz

CFHT/vonderLinden

SZA/Marrone

September 2013

X-ray Surveys

Method

- Scan the sky with an X-ray telescope
 * Or search archive of pointed observations
- Detect sources & identify extended ones
 * Measure flux, size, and, if counts permit, kT
- Measure redshift from the ground

X-ray Surveys

• Virtues

- * The X-ray sky is dark, with few sources; massive clusters are bright, extended and 'easy' to recognize
- * Imaging spectroscopy gives mass estimate (kT_x, M_{gas})

• Limitations

- * Requires an expensive space observatory
- * Requires large time investment to cover large Ω

X-ray vs. Optical Sky

- X-ray source density is MUCH lower than optical source density. In CDFS:
 - 5 X-ray
 - ~5000 optical
- Key challenge for X-ray surveys: collect enough photons
- (Key challenge for optical surveys: assign galaxies to clusters)

September 2013

(Some) X-ray Cluster Surveys

- Pre-ROSAT (Edge, Fabian, Gioia, Henry+)
 - * Ariel V (1974-80)+HEAO-1 (1977-79)+EXOSAT(1983-86): "Allsky", z < 0.2 (Edge, Fabian+,1990)</p>
 - * Einstein (1978-81) 800 deg² z < 0.6 (Gioia et al. 1990)
- ROSAT (1990-98; Böhringer, Fabian, Ebeling, Reiprich, Rosati, Buerinin+)
 - * RASS (all-sky) BCS, REFLEX, HIFLUGCS, MACS, z < 0.5
 - * Pointed: RDCS ~30 deg², z < 0.8; 400d 400 deg², z < 0.8
- XMM (2006+, Pierre+)
 - * LSS 11 deg², XXL 25 deg², z < ~1.5-2
- Future: eRosita (see Andy's short talk yesterday)
- Most X-ray-selected cluster samples come from ROSAT data obtained 15+ years ago

Optical Surveys

Method: Use the cluster red sequence

- Early-type cluster galaxies are redder than foreground objects
- Survey sky in 2+ bands; make images in several color 'bins'
- Search for galaxy over-densities within each color bin
- Color of red-sequence also provides estimate of z

17 Sept 03

Mark Bautz, MIT/CSR

Optical Surveys

- Virtues
 - * Ground-based observation time is (relatively) cheap
 - * New instruments (DES, HSC) are efficient
 - * Only practical way to obtain redshift
 - * In principle provide mass (σ_v , weak lensing)
- Drawbacks
 - * The sky is very crowded; projection is a problem
 - * Mass vs. 'richness' relation is has significant scatter
 - * Requires large time investment to cover large $\boldsymbol{\Omega}$

September 2013

Optical Cluster Surveys

- Abell (1958)
 - * All-sky, 4073 clusters z < ~0.25 (*part* of his PhD thesis!), POSS
 - * Zwicky (1961-68)
- Red-sequence Cluster Survey (RCS; Gladders & Yee 2005)
 - * 72 deg², 956 clusters, z < 1 (CFHT, CTIO)
- SDSS surveys(2007+)
 - * Max BCG: 7400 deg² ~10,000 clusters, z < 0.3
 - * Others (using photo-z): z < 0.6
- Future
 - * Dark Energy Survey (DES) 5000 deg² 10⁵ clusters
 - * スミレ (SuMIRe) (Subaru+HyperSuprimeCam)

September 2013

SZ Cluster Surveys: Method

Cosmic microwave background

 Isotropic to ~ 1 part in 10⁵ on scales ≥ 0.25°
 Anisotropies from WMAP/Planck → precision cosmology
 Compton scattering of CMB photons on hot cluster electrons distorts thermal CMB spectrum → 'secondary' anisotropies (SZE)

WMAP Science Team

mwb MIT/MKI

SZ Cluster Surveys: Method

- SZE now reliably detectable from ground in mm band
 θ ~ 1', ΔT/T ~ ∫dΩ ∫n kT dl ~ 1-10 parts in 10⁴ (150 GHz)
- Signal nearly independent of cluster distance
 - ightarrow
 ightarrow Ideal for finding very distant clusters
- Signal ~ ∫[Pressure]dV ~internal energy of cluster's ICM
 → survey is nearly mass-limited

WMAP Science Team

3/31/11

mwb MIT/MKI

Sunyaev-Zeldovich effect (from John Carlstrom's website)

Galaxy clusters + CMB → Sunyaev-Zel'dovich Effect

from John Carlstrom's web site:

SZE for Astrophysics complement to x-ray and lensing obs

Cluster physics – measure integrated pressure Peculiar velocities at high z Cluster gas mass fraction, Ω_M – clean measure of baryon gas mass Hubble constant, H(z) – combined with x-ray $\rightarrow D_A(z)$ Cluster surveys: – exploit redshift independence

- constrain $\Omega_{\rm M}$, $\Omega_{\Lambda} \sigma_8$, w, w(t)...

$$\frac{\Delta T_{SZE}}{T_{CMB}} \propto \int n_e T_e dl$$

$$S \propto \int \Delta T_{SZE} d\Omega$$

 $\propto \frac{1}{D_A(z)^2} \int n_e T_e dV$

"Primary" CMB vs SZE Anisotropies

WMAP Science Team

3/31/11

mwb MIT/MKI

Figure 1: (Left) A histogram of SPT cluster number counts versus measured redshift. (Right) The mass vs redshift distribution for the SPT 2000d, Planck-ESZ, and ROSAT 400d samples. The SZ selection combined with the excellent match of the SPT beam ($\sim 1'$) to high-redshift clusters makes SPT's selection function nearly redshift independent in contrast to the other surveys. The mass thresholds for the SPT 2000d and ROSAT 400d surveys cross-over at $z \sim 0.6$. Not surprisingly, above this redshift, the proposed SPT-80 sample has 5 times as many clusters as the ROSAT 400d sample used in Vikhlinin et al. (2009a), matching the ratio of areas.

Benson et al. 2011

3/31/11

mwb MIT/MKI

SZ Surveys

- Virtues
 - * 'Selection function' for a given mass is nearly independent of distance → provides high-z samples
 - * Can be done from the ground \rightarrow relatively cheap
- Drawbacks
 - * Mass-observable relation must be calibrated with data from another waveband
 - * Primary CMB fluctuations limit sensitivity at low z
 - * Space-based observatory has limited resolution @ λ ~ 2 mm where SZE is best observed

September 2013

SZ Surveys

D=10m $\delta\theta \sim 1$ arcmin D=1.5m, $\delta\theta \sim 6$ arcmin 2500 deg², ~500 clusters All-sky, 189 clusters (early) M_{med} ~ 2 x10¹⁴ M_{\odot} , z_{med} ~0.5

AAS 7 January 2013

MWB MIT MKI

 M_{med} ~ 5 x10¹⁴ M_{\odot} , z_{med} ~0.15

D=6m, $\delta\theta \sim 2$ arcmin

500 deg², 91 clusters

 $M_{min} \simeq 4 \times 10^{14} M_{\odot}$, $z_{med} \simeq 0.5$

• Cosmology is gravity: $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ * Theory predicts evolution of mass function * To test theory, we need to measure mass

- Astrophysics: Clusters are mostly dark matter
 - * So far, mass (or $\rho(r)$) is sole prediction on DM
 - * To test structure formation must measure this
 - * Gravity (mass) dominates 'baryonic' physics

Ways to measure cluster mass

- There's no such thing as THE mass of a cluster
 * Mass is always measured within a specified radius
- Can measure directly for each cluster in a sample:
 - * From dP/dr measured in X-rays (n_e & kT)
 - * From lensing (shear) or $\sigma_{v,galaxies}$ in optical
 - * From *fpdV* measured at mm wavelengths
- Or indirectly via a (more easily) observable 'proxy' for mass: T_X, L_X, Y_X, galaxy count (richness)
- Proxies require mass-observable scaling relations

• Conservation of fluid mass & momentum: $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0; \quad \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} = - \vec{\nabla} \phi - \frac{\vec{\nabla} P}{\rho}$ • IF:

* Grav. potential Φ is constant on sound crossing time $t_s \approx 6.6 \times 10^8$ yr $(T_{ICM}/10^8 K)^{-1/2}$ (D/Mpc)

* And all forces are from thermal pressure or gravity

• THEN ICM should be in hydrostatic equilibrium:

* $v_{ICM} = 0 \rightarrow \rho_{ICM} = \text{static } \& \nabla P_{ICM} = -\rho_{ICM} \nabla \Phi$

• Spherical symmetry & P = nkT lead to:

$$M(r) = -\frac{kT(r)}{G\mu m_p} r \left\{ \frac{d\ln(n_e)}{d\ln(r)} + \frac{d\ln(T)}{d\ln(r)} \right\}$$

September 2013

Notes on "Hydrostatic Masses"

 $M(r) = -\frac{kT(r)}{G\mu m_p} r \left\{ \frac{d\ln(n_e)}{d\ln(r)} + \frac{d\ln(T)}{d\ln(r)} \right\}$

- The term in {} depends only on the shapes (not the amplitudes) of n_e(r) and T(r)
- Measured quantities must be 'de-projected' to estimate n_e(r) and T(r)
 - * Often need to 'regularize' T(r) (e.g., so dP/dr < 0)
- The biggest observational error arises in measuring T(r): typically $\sigma_T/T \approx 10\% (1500/N_{ph})^{1/2}$

September 2013

Abell 1689 Visible (Yellow) + X-ray (Purple)

Mass from Gravitational Lensing

- Cluster potential distorts shapes of background galaxies
 - ' 'Tangential shear' γ_{T} (r) is added to intrinsic galaxy ellipticity ϵ_{i}
 - $\varepsilon_{obs} = \varepsilon_i + \gamma(r)$
- Cluster mass can be inferred from γ(r)
 - * Example: SIS: $\rho = \sigma^2/2\pi Gr^2 \rightarrow \gamma(r) = r_E/2r$, with
 - * $r_E = 29''\beta(\sigma/1000 \text{ km s}^{-1})^2, \beta = D_{LS}/D_s$
- Intrinsic ellipticities are random but very noisy: $\sigma_{\epsilon i} \approx 0.25$
- Averaging ellipticities of N_{gal} galaxies gives
 - * $<\epsilon_{obs}> \rightarrow \gamma_T(r)$ + error with RMS shear error $\approx 0.25/N_{gal}^{1/2}$
 - * Typical value of shear: M=10¹⁵ M_o z=0.2, $r_{200}=10'_{,}\gamma(r_{200}) \approx 0.015$
 - * Need many background galaxies to measure shear → deep exposures

NASA/STSci

AAS 7 January 2013

MWB MIT MKI

NASA/CXC/MIT/E.-H. Peng

Notes on Weak Lensing Masses

Major systematic errors:

- Background galaxy z affects D_{LS}/D_S
 - * \rightarrow need photo-z
- Cluster extent along line-of sight is not known
 - * Lensing deflection measures projected mass
 - * Much larger problem for WL than for X-rays
- Shear from unrelated substructures along line of sight adds noise

* This adds no bias, but large scatter (few x 10%)

• Weak lensing provides good ensemble average, but a noisy mass measurement for any individual cluster

Properties of Scaling Relations

- Generally assume observable S and mass M related by a power law $S(M) = BM^{\alpha}$
 - * In principle B and α depend on redshift
- Also allow for astrophysical scatter
 - * At fixed mass M, s= ln(S) is a Gaussian random variable (mean <s>, variance σ²_s)
- Ideally
 - * $\langle s \rangle = \alpha(\ln(M)) + \ln B$ (S is unbiased)
 - * σ_{s}^{2} is small (S has low scatter)
- NB: Bias can often be measured, but scatter must usually be estimated from simulations.

Self-Similar Scaling Relations (Gravity Only)

From M ~ 200 $\rho_c R^3_{200}$ and $\rho_c = 3H^2/8\pi G$, find:

- R ~ M^{1/3}H^{-2/3}
- T_X ~ GM/R ~ M^{2/3}H^{2/3}
- $L_x \sim j_X V \sim T^{1/2} \rho^2_{ICM} R^3 \sim f_b^2 \rho_c^2 M^{4/3} H^{-5/3} \sim f_b^2 M^{4/3} H^{7/3}$
- $Y_X \equiv M_{ICM} T_X \sim M^{5/3} H^{2/3}$
- $L_X \sim T_x^2 H$

NB: 'Baryonic physics' (cooling, feedback) alters these

Properties of Mass Estimators

Estimator/Proxy	Bias	Scatter at fixed M	Remarks
Direct Estimators			
Hydrostatic mass (X-ray)	-10 to -20%		Mahdavi+ 12; Lau+ 09; Depends on dyn. state and r
Weak lensing (Visible)	Small?	~30%	Hoekstra+ 13
Compton Y _{sz} (mm wave)	20%	33%	Andersson+11;Marrone+ 12
Proxies			
L _x (total)		48%	Vikhlinin+09
Lx (core-excised)		10%	exclude r<0.15r ₅₀₀
T _x (core-excised)		20%	exclude r<0.15r ₅₀₀
M _{ICM}	<10%	11%	Zhang+10; Vikhlinin+09
$Y_{x} = M_{ICM} * T_{x}$	9%	12%	Vikh+09; Benson+ 13
N ₂₀₀ (Optical Richness)		40%	Rozo+10

September 2013

Scatter affects Scaling Relations

- A flux- (or mass-) limited survey will contain the brighter (or more massive) objects.
- Need to know underlying distribution & scatter to get scaling right

September 2013

What is cluster cosmology best at?

- Parameters affecting a(t) and thus d(z) and g(z):
 - * $\Omega_{m_{r}} \Omega_{DE}$, w
 - * These affect $dV/dz/d\Omega$, M_{obs} , $f_{b obs}$
 - * Measures these at z < ~1 when clusters are forming
- Parameters affecting amplitude of density fluctuations at fixed z:
 - * σ₈, others [n,m_ν,...]
 - * Cluster dN/dm is exponentially sensitive to σ_8

September 2013

Early Cluster Cosmology from ASCA Before SNIa & WMAP results

THE ASTROPHYSICAL JOURNAL, 489:L1–L5, 1997 November 1 © 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A MEASUREMENT OF THE DENSITY PARAMETER DERIVED FROM THE EVOLUTION OF CLUSTER X-RAY TEMPERATURES

J. PATRICK HENRY

Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822; henry@galileo.ifa.hawaii.edu Received 1997 April 4; accepted 1997 August 13; published 1997 October 7

ABSTRACT

We have, for the first time, determined the cluster X-ray temperature function at a redshift other than zero. The observed evolution of the temperatures is mild to a redshift of one-third. The normalization of the luminosity-temperature relation is 0.92 ± 0.07 of the low-redshift relation (1 σ error), assuming that its shape is the same. Such behavior occurs when clusters form with constant central entropy. The evolution of the temperature function implies that Ω_0 is 0.50 ± 0.14 assuming an open universe, or 0.55 ± 0.17 assuming that a cosmological constant produces a flat universe (1 σ symmetrized errors). A closed universe, $\Omega_0 \ge 1$, is excluded at greater than 99% confidence. The amplitude of the mass density fluctuations averaged over 8 h^{-1} Mpc spheres, σ_8 , is $0.66^{+0.22}_{-0.08}$ and $0.66^{+0.34}_{-0.17}$ (1 σ errors) for the open and flat models, respectively.

Subject headings: cosmology: observations — galaxies: clusters: general — large-scale structure of universe — X-rays: galaxies

September 2013

Results: Growth of Structure

VIKHLININ ET AL. 2009

September 2013

Results: Growth of Structure

Flat Universe assumed

September 2013

September 2013

September 2013

Results: Growth + f_b

Allen+ 2008; Mantz+ 2010

Figures: Allen+ 2011

Astro-H Summer School Shuzenji

Role of Astro-H

- In principle, Astro-H could make very precise mass measurements for a few clusters
- Biggest contribution may be to test our understanding of cluster astrophysics
 - * E.G., Do simulations predict the correct scatter in X-ray mass proxies?
- Tomorrow: cluster astrophysics relevant to cosmology

September 2013

Bonus

September 2013

Optical Surveys

Method (modern approach)

- Relies on cluster Red sequence
 - * Survey the sky in two or more passbands
 - * Make images in several color 'bins'
 - * Search for galaxy over-densities within each color bin
 - Finds 'red-sequence' with that color
 - * Estimate redshift (via photometry or spectroscopy)

Surveying the cluster population at earlier times

Find them at λ = 3mm 3/31/11

mwb MIT/MKI

X-ray/mm-wave connection

- SPT & Chandra measure the same plasma: * mm (SZE) signal: $\Delta T/T = Y \sim \int n_e T_e dV \sim P \times V$ * X-ray: $S_X \sim \int n_e^2 dI$; $dN_X(E)/dE \rightarrow T_e$; (n, T, V)
- Chandra provides spatial resolution...
 - * $\delta \Theta_{X-ray} \sim 1'' \text{ cf } \delta \Theta_{mm} \sim 1' \sim \Theta_{cluster}$ * X-ray density profile improves mm Y est.
- …And more accurate (if model-dependent) mass estimates (better SNR)

Optical Cluster Surveys

- Abell (1958)
 - * All-sky, 4073 clusters z < ~0.25 (*part* of his PhD thesis!), POSS
 - * Zwicky (1961-68)
- Red-sequence Cluster Survey (RCS; Gladders & Yee 2005)
 - * 72 deg², 956 clusters, z < 1 (CFHT, CTIO)
- SDSS surveys(2007+)
 - * Max BCG: 7400 deg² ~10,000 clusters, z < 0.3
 - * Others (using photo-z): z < 0.6
- Future
 - * Dark Energy Survey (DES) 5000 deg² 10⁵ clusters
 - * スミレ (SuMIRe) (Subaru

September 2013

Mass Estimates

- X-ray:
 - * ICM pressure gradient (Hydrostatic equilibrium)
 - * Y_x
- Optical
 - * Richness
 - * Galaxy velocities (virial theorem)
 - * Lensing
- SZ

