
AGN1	

Meg	Urry	
Yale	University		

AGN1:	Introduction	

AGN	Unification,	radio	galaxies,	radio	
loudness,	jets,	blazars	



Topics	for	AGN	Part	I		
•  Introduction	to	AGN		

– Unification	ingredients:	BH,	disk,	BLR,	NLR,	torus/
obscuration,	jets	

–  Radio-loud	v.	radio-quiet	
–  Blazars	as	beamed	radio	galaxies	

•  Multiwavelength	emission	from	blazars		
–  Relativistic	beaming		
–  Parent	population	(radio	galaxies)	and	the	effect	of	
beaming	on	luminosity	functions	

–  Time	variability	(&	polarization?)	
–  Spectral	energy	distributions	and	the	Fossati	scheme	

AGN ingredients: 
Black hole 

Accretion disk 
Broad & narrow 
emission line 
clouds 
Ionized plasma 
Obscuring torus (or 
warped disk) 
Jets (optional?) 
 



Cygnus A – FR2 radio galaxy  

Carilli et al.  
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M87 – FR1 radio galaxy 



Owen et al. 

M87 – FR1 radio galaxy 
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M87 jet 



Why do active 
galaxies have 
jets (or not)? 
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FR2	

FR1	

weak	

Maybe	all	
AGN	make	

jets	

_____	Old	radio	samples	

_____	FIRST	quasars	
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Active galaxy (schematic) 

blazar 

radio 
galaxy 
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Active galaxy (schematic) 

BL Lac 

FR1 radio 
galaxy 
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Active galaxy (schematic) 

FSRQ 

FR2 radio 
galaxy 

�Relativistic� Jets 
•  Seen in some active galaxies or quasars 

(galaxies with fast-growing supermassive black holes) 

•  Jets form near black hole 

•  Inner jets are relativistic (jet material flows 
outward at nearly the speed of light) 

•  Relativistic speeds to kpc scales 

•  Implies huge kinetic energy 

•  Clues from blazars 



AGN1: Blazars &  
Relativistic Beaming 

Special relativity, superluminal 
motion, Doppler factor, beaming 

Blazars are extreme quasars   

•  Optically point-like (like a star) 
•  Rapidly variable 

➨  must be compact 

•  Superluminal (faster than light) 

•  Very luminous! 



Rapid Variability (gamma rays) 

5 days 

x10 

Mattox et al. 

… implies blazars are compact 

If much brighter in 1 day, 

must be <1 light-day across. 
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50 light years 

Wehrle et al. 2001 

3C 279 inner jet 

Superluminal Motion 

changing 
with time  



Blazars are extreme quasars   

•  Optically point-like (like a star) 
•  Rapidly variable 

➨  must be compact 

•  Superluminal (faster than light) 

•  Very luminous! 

Special Relativity 

Finite speed of light 
+ relativistic outflows in jets ⇒ 

– Appearance of superluminal motion 
– Appearance of rapid variability 
– Apparently high luminosity 
– Copious production of X- and γ-rays 

i.e., blazars 



Superluminal motion 

v 

Superluminal motion 

Δt 



v sin θ  
    

(1- v/c cos θ ) 

θ
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apparent speed  = 







v ~ c 











Doppler beaming 

δ = [ γ (1 – β cosθ) ]−1 

where γ = (1− β2)−1/2  and β=v/c 
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Doppler beaming effects 

Appearances: 

•  Events happen faster: Δtobs = δ–1 Δtem  

•  Radiation is blue-shifted: νem = δ νem  

•  Superluminal velcty: vobs = v sinθ/(1-βcosθ) 

                                             = v γδ sinθ 

•  Intensity is much higher: Iobs = δ3 Iem 

Homework:   Limits near θ~0 

•  Maximum vapp?                              [vapp<γv] 

•  Maximum value of δ?                        [δ<2γ] 
•  Angle at which vapp is maximum?     [θ~1/γ] 

•  Value of δ at that angle?                   [δ~2γ] 

•  Approximate ratio beamed (θ<1/γ) objects 
to unbeamed objects (the rest)?            [γ2] 



Blazars are  
Nature�s demonstration of Special 

Relativity 

§  Jets pointing at us! 
Ø Many more must point elsewhere 

Ø these are �radio galaxies� 

§ Outflow speeds v~c 

Cygnus A – FR2 radio galaxy  

Carilli et al.  
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Active galaxy (schematic) 

FSRQ 

FR2 radio 
galaxy 

Beamed luminosity functions  

parent (radio galaxy) and beamed 
(blazar) populations 



Relativistically beamed LF 
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Relativistically beamed LF 
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Relativistically beamed LF 

log L 

beamed 

unbeamed radio galaxies 

blazars 
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Jet Dominated 
0<θ<θc 

not Jet Dominated 
θ<θc<90° 

Urry & Shafer 1984 



Quasar/FRII radio LFs 

Padovani & Urry 1992 

BL Lac/FRI radio LFs 

Padovani & Urry 1991 



BLL/FRI X-ray LFs 

Urry & Padovani 1991 

Blazars + radio galaxies = Unification 

•  Parent populations identified 
– BL Lacs = FR1s 
– FSRQs = FR2s 
– Lots of transitional objects 
– γ, δ, θ, β vary 

•  γ ~ 5-10 for LFs to match 
•  γ up to 100 seen (300 in GRBs), from time 

variability, superluminal motion, Compton 
catastrophe,.. 



Time variability 

Multiwavelength light curves, 
emission models 

3C 454.3 

γ-ray all-sky map 

~300 MeV – 10 GeV 



High-energy blazar observations 

•  Fermi Gamma-ray space 
telescope 

•  100 MeV - 300 GeV 
•  High energy peak of most 

luminous blazars 

•  Atmospheric Cerenkov 
telescopes (VERITAS, 
MAGIC, H.E.S.S.) 

•  VHE gamma-rays up to 
several TeV 

•  Peak of less luminous 
blazars 

Yale/SMARTS multiwavelength campaign 

•  SMARTS: Small and Moderate 
Aperture Telescope System      
Cerro Tololo, Chile 

•  SMARTS 1.3m + ANDICAM: 
simultaneous 0.4-2.2 µm images 
BVRJK every 1-3 days 

•  Optical spectra of bright blazars           
once per month per object 

•  Data online 
•  ~1 day response time for flaring 

sources www.astro.yale.edu/smarts/fermi/ 



3C 454.3 Multiwavelength Data 

Multiwavelength Variability 
of Blazars Julian Day 
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Bonning et al. 2009 

3C454.3:	2008-2009	
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3C454.3:	IR	-	γ-ray	correlation	

log	flux	

log	flux	

2008	

2009	

Bonning et al. 2012 

 
Accretion disk:  
multi-temperature 
thermal continuum 

 
Jets: relativistically 
beamed synchrotron 
and inverse Compton 
emission 
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Optical Polarization in 
PKS 1510-089 
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blob passes through core 
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Bright superluminal blob passed �core� in early May 2009 

Apparent speed = 21c 

Marscher et al. (2010) 

VLBA images at 43 GHz                    Contours=intensity, Colors=polarization 

 Superluminal knot emerges in PKS 1510-089 
(May 2009, ~MJD 4960) 



BL Lac 

Prominent	γ-ray	
flares	when	knot	
passes	through	
43GHz	core	

Marscher	group	
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Trends in λλλ variability for FSRQs 

•  Gamma-ray + optical/IR variations correlate 
→ Same electrons (External Compton or Synchrotron Self-Compton) 

•  γ, opt usually faster than X-ray, IR, mm 
→ smaller volume and/or more severe radiative losses 

•  γ-ray flares coincide with events in radio jet 
→ Standing shocks in jet? 

•  γ-rays should produce e+e− pairs 
→ Low photon/particle density → γ-rays produced far from BH? 

•  Related to direction of magnetic field? 

Spectral energy distributions 

SED shape, trends, Fossati 
scheme 



Blazar Spectral Energy Distributions (SED)

Fig. from Boettcher, Astro. Space Sci,  (2007)

•  SED has two peaks
•  Peak energy decreases with increasing peaks luminosity

Fossati et al 1998

LBL 

HBL 

SED-luminosity trend required: Urry, Brandt, Maraschi+ 

Sambruna et al. 2007, 
Fossati et al. 2007, 2008 



1LAC: Blazars by synchrotron peak

Ghisellini Celotti & Costamante 2002 

Physical Parameters along the SED Sequence 



more variability above peaks 

LBL 

HBL 
Sambruna et al. 2007, 

Fossati et al. 2007, 2008 

Unresolved jets 

Use SED + variability to infer jet 
structure and physics 



Ballo et al. 2002 

3C 279 

synchrotron 

SSC (synchrotron 
self Compton) 

EC (external 
Compton = seed 
photons from disk 

or broad lines) 
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Challenges for SED modeling 
•  Many models fit 

single-epoch SED 
•  Temporal variability 

adds constraints 
•  Requires 

simultaneous λλλ  
data (multiple 
observatories) 

Boettcher et al. 2007 



Classes of emission models 
•  Leptonic  

–  Synchrotron radiation 
–  Inverse Compton-scattered radiation 

•  SSC = scattered synchrotron photons 
•  EC = scattered ambient (thermal) photons 

•  Hadronic 
–  Strong magnetic fields (10s G) accelerate protons 

•  High-energy peak from proton synchrotron radiation and µ+µ 

cascades 
•  Photo-pion production and pion decay 
•  Low-energy peak from electron synchrotron 

Coordinated 
variations 
predicted 

Resolved jets (kpc scales) 
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Centaurus A galaxy 

July 2008 Aspen Center for Physics 96 

Cen A 

X-ray 

Radio 

Optical Composite 
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Cen A jet 

Optical, X-ray composite 

July 2008 Aspen Center for Physics 98 

1354+195 

Sambruna et al. 2002, with Cheung, 
Maraschi, Scarpa, Tavecchio, CMU 

1136-135 

kpc X-ray jets 

X-ray in color 
Radio in contours   



Quasar/Blazar 3C 273 

July 2008 Aspen Center for Physics 100 Uchiyama et al. 2006, Jester et al. 2006 

3C 273 Outer Jet 

1ʺ 



SEDs of 3C273 Jet Knots 

Resolved jets 

•  Inverse Compton scattering of CMB photons 
– CMB photon density is strong function of redshift 

•  Requires on large (kpc) scales 
– Relativistic electrons 

– Relativistic bulk motion 



Jet models 

Shocks in jet 

Jet Power 

 where 



Maraschi, Ghisellini & Celotti 1992; Sikora, Begelman & Rees 1994; Dermer & 
Schlickeiser 1993; Marscher et al. 2010, /Agudo et al. 2010 … 

resolved X-ray jet 

blazar emission: 
particles accelerated 
at standing transverse 
shocks 

accretion region: 
gravitational energy 
converted in disk 

1022 – 1024 cm 

1018 cm 

1017 cm 

>1014 cm 

JET 

DISK 

Accepted concepts: 
•  Blazars = relativistic jets pointed at us 
•  Parent population = radio galaxies  

– FRI à BL Lacs (HBL) 
– Weak-lined FRII à BL Lacs (LBL)  
– FRII à FSRQ 

•  Range of intrinsic power. Linked to SED      
Fossati 

•  Particles accelerated by shocks in jet 

•  Blazars à jet physics 



Jet power 
 = feedback? 

Perseus A 
Fabian et al 

•  Opt/IR well correlated with γ-rays  FSRQ, LBL 

•  Lags < 1 day    SMARTS 

•  Above peak: high variability   + polarization 

•  Correlation: same electron energy  leptonic models 

•  Polarization flips reported   Bjornsson et al. 1982a,b 

–  “blob” on helical trajectory, or 

– different regions light up     multi-zone models 

•  X-ray polarization coming     Astro-H! 

Observational results: 



blazar demographics debate 

N(P) 

P 

Maraschi +  Giommi +  

X-ray radio 

New perspectives: demographics debate 

•  EGRET detected FSRQ, some LBL, few 
HBL 

•  Fermi detects more of each – 
– But larger increase in HBL 

•  That is, as flux limit ↓ ratio HBL:FSRQ ↑ 
•  As predicted if HBL more numerous! 
•  This is logical: “Normal” luminosity 

function, with few high-luminosity blazars 
and many low-luminosity blazars 



•  Previously: 〈V/Vm〉<0.5 for HBL, 〈V/Vm〉>0.5 for FSRQ 
•  Equivalently: few HBL at high z, few FSRQ at low z 
•  Evolution FSRQ à BLL? 
BUT 
•  Different evolution due to selection effect  

Brandt, Urry, Maraschi et al., in preparation 
SO, do FSRQ evolve to BL Lacs? 
•  Not necessary  

New perspectives: evolution 

•  Ultra-high-speed outflows à Γ∼100        
PKS 2155-304 

•  Hadronic v. leptonic models 
– Variability favors SSC/EC models 
– Neutrino detection would be unambiguously in 

favor of hadronic models 

•  Big goal: jet kinetic energy 
–  (Eddington limit should include total energy) 

Open issues 



Open issues 
Intrinsic parameters +  Doppler beaming           

à observed blazar properties … BUT 
•  Doppler factor (guess) + emission 

mechanism (debated) à physical parameters 
(very uncertain) 

•  Particle composition uncertain (x2000 in 
energy!) 

•  N(Pkinetic) of jets hotly debated since 1990s 

Jet power, matter content 

If Pe <  Ljet   à protons   

Celotti & Ghisellini 2002, Maraschi & Tavecchio 2004, Wardle 1998, Hirotani et al. 2000 
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